NMR Studies on Iron-Pnictide Superconductors K. ISHIDA^{1,2}, Y. NAKAI^{1,2}, S. KITAGAWA^{1,2}, T. IYE^{1,2}, Y. KAMIHARA^{2,3}, M. HIRANO³, H. HOSONO^{3,4}, S. KASAHARA⁵, T. SHIBAUCHI¹, Y. MATSUDA¹, AND T. TERASHIMA⁵ Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan ²TRIP, JST, Sanban-cho, Chiyoda, Tokyo 102-0075, Japan ³Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan ⁴Frontier Research Center, Tokyo Institute of Technology, Yokohama 226-8503, Japan ⁵Research Center for Low Temperature and Materials Science, Kyoto University, Kyoto 606, 8502, Japan kishida@scphys.kyoto-u.ac.jp We present NMR results on iron-pnictide superconductors of LaFeAs($O_{1-x}F_x$) and BaFe₂(As_{1-x}P_x)₂. In LaFeAs($O_{1-x}F_x$), $1/T_1$ in the undoped LaFeAsO exhibits a distinct peak at $T_N \sim 142$ K below which NMR spectra become broadened due to the internal magnetic field attributed to an antiferromagnetic (AFM) ordering. In the x=0.04 sample, $1/T_1T$ of ⁷⁵As exhibits a Curie-Weiss temperature dependence down to 30 K, suggesting the development of AFM spin fluctuations, and decreases below superconducting(SC)-transition temperature $T_c \sim 16$ K. The AFM fluctuations are significantly suppressed with F-doping, and a pseudogap behavior is observed in $1/T_1T$ in the x=0.11 sample with a maximum $T_c \sim 23$ K in LaFeAs($O_{1-x}F_x$) [1]. The spin dynamics vary markedly with F-doping, which is ascribed to the change of the nesting between hole and electron Fermi-surfaces by the electron doping, and the pseudogap behavior in $1/T_1T$ is shown to originate from the characteristic energy dependence of the density of state around the Fermi energy. The significant suppression of $1/T_1T$ upon F doping while T_c remains nearly unchanged suggests that the low-energy AFM fluctuations probed by the NMR measurements do not play an important role in the superconductivity in LaFeAs($O_{1-x}F_x$)[2]. On the contrary, $1/T_1T$ in BaFe₂(As_{0.67}P_{0.33})₂ with a maximum $T_c \sim 30$ K in BaFe₂(As_{1-x}P_x)₂ continues to increase down to T_c , indicating the development of the AFM fluctuations, and sharply decreases below T_c due to opening of the SC gap. The AFM fluctuations are suppressed and T_c also decreases with increasing P content. From the analyses of $1/T_1T$ in the normal state, it is shown that the maximum T_c sample is located in the vicinity of the quantum critical point of the AFM ordering, and that the AFM fluctuations are intimately related to the superconductivity in BaFe₂(As_{1-x}P_x)₂. It was found that the relationship between the AFM fluctuations and superconductivity are quite different between LaFeAs(O_{1-x}F_x) and BaFe₂(As_{1-x}P_x)₂. We also show that the SC gap in BaFe₂(As_{0.67}P_{0.33})₂ revealed by $1/T_1$ below T_c possesses the residual density of state near E_F , suggesting the presence of the nodes in the SC gap[3]. This is different from other iron-pnictide superconductors. We discuss possible SC state in BaFe₂(As_{0.67}P_{0.33})₂ and other iron pnictides, and the similarity between BaFe₂(As_{0.67}P_{0.33})₂ and heavy-fermion superconductors. ^[1] Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn. 77, 073701 (2008). ^[2] Y. Nakai, S. Kitagawa, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, New Journal Of Physics 11, 045004 (2009). ^[3] Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, S. Kasahara, T. Shibauchi, Y. Matsuda, and T. Terashima, Phys. Rev. B **81**, 020503 (R) (2010).