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Decadal Predictability: Broader Context
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Figure 1. Long-term variations in the annual runoff for the UCRB (762-2005). (a) Variations in the mean runoff are
assessed using 35-year moving averages. The results are shown as departures from a reference mean of 15.2 Million Acre-
feet (MAF) from the 1888—1922 period. (b) Interannual variability of UCRB runoff is characterized based on the standard
deviation. As in Figure 1a, the long-term variability is shown as a departure from a reference standard deviation of 3.4 MAF
(1888—1922 period). Spatial extent and severity of aridity for five select dry periods (triangles are shown at the last year of
the respective 35-year windows) is shown on the five maps of average PDSI over the focal periods.




Impacts on Storage requirements
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Figure 2. (a) Long-term variations in the serial correlation (p) of annual runoff for the UCRB (762—2005). Persistence in
the runoff is based on lag-1 correlation estimates (grey) for 35-year moving windows. The impact of persistence of required
storage expressed as (1 + p)/(1 - p)—this Storage Scaling factor (blue) is a ratio of required storage for any 35-year window
to the estimate for the shown the 1888—1922 period. A vertical dashed line highlights the serial correlation estimate for the
35-year period ending in 1922. (b) Variations in the storage requirements estimated from the Gould-Dincer procedure—
35-year moving window runoff segments are used to estimate the storage requirement for a hypothetical reservoir serving a
water demand of 80% of the mean annual inflow computed for the 1888—1922 period, with 95% reliability. Storage for a
particular 35-year period is expressed as a fraction of the baseline storage based on the 1888—1922 period. Consequently,
the ratio attains a unit value at 1922 (shown as a dashed vertical line). For each period, the relative impact of the temporal
variations in the mean, standard deviation, and serial correlation is examined by selectively including the variables for
storage computations, while the remainder of variables is held constant at the 1888—1922 value. The periods that are not
consistent with the carryover storage and first passage time assumptions are marked (by grey circles and crosses
respectively).




Mouvation

* Regional Case Studies, as a way to diagnose and understand:
* Changing hydroclimatic baselines

* Systemic thresholds

* Near-term " amplification of Regional Risk:

Natural Variability + Anthropogenic Change

*for example, up to 30-year time horizons




Streamflow/River Discharge

+ Western United States

* Changes in seasonality and implications for management and
decision-making

* Northeastern United States
* Wintertime climate sensitivity

* Role of ENSO and other climatic drivers

*  Data: US Geological Survey Steamgauging Network

*  60-year daily records (selected based on minimal regulation)




Considerations

* Snowmelt-dominated watersheds integrate precipitation and temperature variability.

* Magnitude and Timing sensitively linked to numerous natural and human systems
functions.

* “The natural flow regime (movement of water and sediments) organizes and defines running
water ecosystems, and can be considered a “master variable” that limits the distribution and
abundance of riverine species and regulates the ecological integrity of flowing water systems
(Poff et al. 1997). In most instances, however, the importance of natural streamflow variability
in maintaining healthy aquatic ecosystems is still greatly ignored in a management
context” (Braga, 1999).

* Adaptation strategies intimately linked to changing seasonality and its variability.

* Episodic warming in mid-winter may cause loss of snowpack-abrupt shift in the
seasonal cycle...dominant spring flow --> wintertime dominance.




Changes 1in Seasonality
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Abstract Changes in the seasonality of streamflow in the western United States
have important implications for water resources management and the wellbeing
of coupled human-natural systems. An assessment of changes in the timing and
magnitude of streamflow resolved at fine time scales (days to weeks and seasons)
is highly relevant to adaptive management strategies that are responsive to changing
hydrologic baselines. In this paper, we present a regional analysis of the changes in
streamflow seasonality through a broad classification of streams and quantification
of increases and decreases in flow, based on a quantile regression methodology.
This analysis affords a useful research product to examine the diversity of trends
across seasons for individual streams. The trend analysis methodology can identify
windows of change, thus revealing vulnerabilities within decision calendars and
species lifecycles, an important consideration for adaptation and mitigation efforts.




Annual (Decision) Calendars
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a. Key Flow Seasons
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* Data: US Geological Survey Steamgauging Network (1948-2007)

*  60-year daily records (selected based on minimal regulation)
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Changes in Seasonality

a. Seasonality b. Trends in Runoff (normalized)  c. Trends in Runoff
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Changing Seasonality of River Discharge
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Stream gauges across Maine show statistically significant increases (blue) and decreases (brown) in river
flows in late Winter and Spring, respectively. The Shaded block represents the regulatory season used by
the Maine Department of Environmental Protection to prescribe season-specific Aquatic Base Flow levels.
A Mann-Kendall statistical test on daily streamflow data confirmed trends during the 1952-2007 period.

Maine Climate Report, 2009




Midwinter-sensitivity in snow-
dominated river systems

a. Correlation between TNH and 250 hpa geopotential height and SSTs

b. Wintertime Tropical Northern Hemisphere Pattern
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TNH-related Temperature
variability
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Winter Streamflow Fraction
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ENSO-related teleconnections 1n
to the future
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Changes in Correlation

Correlation between TNH and NINO
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AMO and Atlantic Tripole Index
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Temperature (Jan-Feb)

Precipitation (Jan-Feb)
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Sensitivity of River Discharge to ENSO-related variability

a. Seasonal maximum flows
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Sensitivity of River Discharge to ENSO-related variability

a.Interquartile range
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Conclusions

* Regional diagnostic studies provide an important perspective
regarding decadal and longer-time scale variability (m1ust co-evolve
with mechanistic and modeling work)

* Annual decision calendars intimately linked to human and natural
system:s.

* Understanding the seasonal-specific role of decadal variability of
great utility in vulnerability and adaptation work

* Decadal and longer-time modulation of seasonal-to-interannual
variability may have significantly impact the near-term risk for
emerging hydroclimatic regimes in the North American region.




