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Introduction 

 Before introducing the subject of scaling, which in simple words can be understood 

as a set of operations to find scale factors to relate characteristics of one system to 

corresponding characteristics of another system, we will introduce the topic of dimensional 

analysis which allows us to determine these scale factors. It refers to the study of the 

dimensions that characterize physical quantities, like mass, force and energy. Classical 

Mechanics is based on three fundamental quantities, with dimensions MLT, the mass M, 

the length L, and the time T. The combination of these entities gives rise to derived 

quantities, like volume, speed and force, of dimensions L3, LT-1, MLT-2, respectively. In 

other areas of Physics, other four fundamental quantities are defined, among them the 

temperature θ and the electrical current I. 

 To introduce the topics of Scaling and of Dimensional Analysis, let us look at a 

classical example of the romantic literature, in which Dean Swift, in “The Adventures of 

Gulliver” describes the imaginary voyages of Lemuel Gulliver to the kingdoms of Liliput 

and Brobdingnag. In these two places life was identical to that of normal persons, their 

geometric dimensions were, however, different. In Liliput, man, houses, dogs, trees were 

twelve times smaller than in the country of Gulliver, and in Brobdingnag, everything was 

twelve times taller. The man of Liliput was a geometric model of Gulliver in a scale 12:1, 

and that of Brobdingnag a model in a scale of 1:12 (Figure 1). 
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Figure 1. Schematic view of the kingdoms of Brobdingnag and Lilliput in comparison to 

Gulliver.  

 

Analysing this dream of Dean Swift, one can come to interesting observations of 

these two kingdoms through dimensional analysis. Much time before Dean Swift, Galileus 

already found out that amplified or reduced models of man could not be like we are. The 

human body is built of columns, stretchers, bones and muscles. The weight of the body that 

the structure has to support is proportional to its volume, that is, L3, and the resistance of a 

bone to compression or of a muscle for traction, is proportional to L2.  

 Let´s compare Gulliver with the giant of Brobdingnag, which has all of his linear 

dimensions twelve times larger. The resistance of his legs would be 144 times larger than 
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that of Gulliver, and his (volume) weight 1728 times larger. The ratio resistance/weight of 

the giant would be 12 times less than Gullivers. In order to sustain its own weight, he 

would have to make an equivalent effort to that we would have to make to carry other 

eleven men. 

 Galileus treated this subject very clearly, using arguments that deny the possibility 

of the existence of giants of normal aspect. If we wanted to have a giant with the same 

leg/arm proportions of a normal human, we would have to use a stronger and harder 

material to make the bones, or we would have to admit a lower resistance in comparison to 

a man of normal stature. On the other hand, if the size of the body would be diminished, the 

resistance would not diminish in the same proportion. The smaller the body, the greater its 

relative resistance. In this way, a very small dog could, probably, carry other two or three 

small dogs of his size on his back; on the other hand, an elephant could not carry even 

another elephant of his own size ! 

 

Figure 2. Comparison between the giant of Brobdingnag and Gulliver.  
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Let´s analyze the problem of the liliputans. The heat that a body loses to the environment 

goes through the skin, being proportional to the area covered by the skin, that is, L2, 

considering constant the body temperature and skin characteristics. This energy comes 

from the ingestion of food. Therefore, the minimum volume of food to be ingested would be 

proportional to L2. If Gulliver would be happy with a broiler, a bread and a fruit per day, a 

liliputan would get a (1/12)3 smaller food volume. But a broiler, a bread, a fruit when 

reduced to the scale of his world, would be proporcional to a surface area (1/12)2 smaller. 

He would, therefore, need twelve broilers, twelve breads and twelve fruits to be as happy as 

Gulliver. 

 

Figure 3. Comparison between the dwarf of Lilliput and Gulliver. 
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 The liliputans should be famine and restless people. These qualities are found in 

small mammals, like mice. It is interesting to note that there are not many hot blood 

animals smaller than mice, probably in light of the scale laws discussed above, these 

animals would have to eat such a large quantity of food that would be difficult to obtain or, 

that could not be digested over a feasible time. 

 From all we saw, it is important to recognize that, although being geometric models 

of our world, Brobdingnag and Liliput could never be our physical models, since they 

would not have the necessary physical similarity which is found in natural phenomena. In 

the case of Brobdingnag, for example, the giant would be able to support his own weight 

having the stature of humans, if he would be living in a planet of gravity (1/12)g. 

  

Physical Quantities and Dimensional Analysis 

 The parameters that characterize physical phenomena are related among themselves 

by laws, in general of quantitative nature, in which they appear as measures of the 

considered physical quantities. The measure of an quantity is the result of its comparison 

with another one, of the same type, called unit. In this way, a quantity (G) is given by two 

factors, one being the measure (M) and the other the unit (U). When we write V = 50 m3, V 

is the quantity G, 50 is the ratio between the measures (M), and the unit U is m3. Therefore: 

 

G = M (G) . U (G) 

  

M(G) being the measure of G and U(G) the unit of G. In addition, the quantity G has a 

dimensional symbol, which is the combination of the fundamental units that built up the 

entity. Some examples are given below: 
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Entity (G) M (G) U (G) 
Dimensional 

symbol 

Area 200 m2 L2 

Speed 40 m s-1 LT-1 

Force 50 N = kg m s-2 MLT-2 

Pressure 1,000 Pa = kg m-1 s-2 ML-1 T-2 

Flow 5 m3 s-1 L3 T-1 

 

The International Units System has seven fundamental quantities: 

a) Mass (M): quilogram (kg); 

b) Lenght (L): meter (m); 

c) Time (T): second (s); 

d) Electrical current (I): Ampere (A); 

e) Thermodynamic temperature (θ): Kelvin (K); 

f) Light intensity (Iv): candela (cd); 

g) Quantity of matter (N): mol (mol). 

 

 Derived Physical quantities are, in general, expressed by a relation involving the 

fundamental or derived quantities X, Y, Z, ... which take part in their definition: 

 

...........Z .Y .X kG cba=  

 

where k is a non dimensional constant, and a, b, c, .... are integers or real exponents. 

 If, for example, we would have doubts on the formula F = m.a, we could make a 

check and admit, at least, that F is a function of m and a: 
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ba Y.X kG =      or      ba a.m kF =  

 

since F has dimensions MLT-2, the right hand side member has also to have dimensions 

MLT-2, that is: 

 

( )b2a2 LT.M kMLT −− =  

 

remembering that the dimension of acceleration is LT-2. So, b2ba2 T .L .M kMLT −− = , and 

we can see that the only possibility is k=1, a=1 and b=1, thus confirming F=m.a.  

 Products P are any products of the variables that involve a phenomenon. The fall of 

bodies from an origin 0 with no initial velocity in the vacuum involves the variables space 

S, acceleration of gravity g and time t, according to: 

 

2t . g
2
1S =  

 

 For this phenomenon we can write an infinite number of products P, as for example: 

P1 = S2. t -2.g  ,  with dimensions  L2.T-2. L .T-2 = L3.T-5 

 P2 = S0. t 2.g  ,  with dimensions   1.T2. L .T-2 = L 

 P3 = S -3. t 4.g  , with dimensions  L-3.T 4. L .T-2 = L-2.T2 

 P4 = S -2. t 4.g2  , with dimensions  L-2.T4. (L .T-2)2 = L0.T0 = 1 
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 When a chosen product is non-dimensional, as P4, it is called a non-dimensional 

product and is symbolized by π, in this case P4 = π4. The Buckingham Pi Theorem states 

that: “given n dimensional quantities G1, G2, ...., Gn generated through products of k 

fundamental entities, if a phenomenon can be expressed by the function  F(G1, G2, ...., Gn) 

= 0, it can also be described by φ(π1, π2, ...., πn-k) = 0”, a function with less variables. 

 The problem mentioned in the introduction about the Kingdoms of Liliput and 

Brobdingnag, is of physical similarity. Every time we work with models of objects in 

different scales, it is necessary that there is a physical similarity between the model (a 

prototype, in general smaller) and the real object of study. Depending on the case, we talk 

about kinematic similarity, which involves relations of velocity and acceleration between 

model and object; or about dynamic similarity, which involves relations between the forces 

that act on the model and on the object . In the similarity analysis we use the π products, 

like the known “numbers” of Euler, Reynolds, Froude and Mach. In this analysis we have: 

OBJECT: 

 F(G1, G2, ...., Gn) = 0                            φ(π1, π2, ...., πn-k) = 0 

 PROTOTYPE: 

 F(G’1, G’2, ...., G’n) = 0                            φ(π’1, π’2, ...., π’n-k) = 0 

and the Gi s can be different of G’i s. There will be physical similarity between object and 

prototype, only if π1 = π’1; π2 = π’2; ...; πn-k = π’n-k.  

 This analysis is frequently used in hydrodynamics, studies of machines, 

engineering, etc., and it has not many applications in Soil-Plant-Atmosphere systems. The 

study of Shukla et al. (2002) which utilizes the non dimensional products π to describe 
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miscible displacement, is an exception. Texts of Maia (1960), Fox & McDonald (1995) e 

Carneiro (1996) are good references on this subject. 

 Non dimensional quantities, like the π products, have a numerical value k of 

dimension 1: 

 

1KTLM oooo =  

 

 It is also common to produce non-dimensional variables through the ratio of two 

entities G1 and G2 of the same dimension: G1/ G2 = π. This is the case of the number π = 

3,1416..... which is the result of the ratio of the length of any circle (πD, of dimension L) 

and the respective diameter (D, also dimension L). 

In the Soil-Plant-Atmosphere system, several variables are non dimensional by 

nature (or definition), and are represented in % or parts per million (ppm). Soil water 

content u (on mass basis), θ (on volume basis), porosities, etc., are examples of π products. 

Important is the procedure of turning dimensional variables into non dimensional ones.  

The simplest case is dividing the variable by itself, in two different conditions. For 

instance, in experiments using soil columns, each researcher uses a different column length 

L. How can we compare results? If the space coordinate x or z (along the column) is 

divided by its maximum value L, we have a new variable: X = x/L, with the advantage that, 

for any L, at x = 0, X = 0; at x = L, X =1, varying, therefore, within the interval 0 to 1. 

 This procedure can also be used for variables which already are dimensionless, like 

the soil water content θ. If we divide (θ - θs) by its largest interval (θo - θs), where θs e θo 

are, respectively, initial and saturation values, we obtain a new variable Θ = (θ - θs)/(θo - 
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θs), for which Θ = 0 for θ = θs (dry soil) and Θ = 1 for θ = θo (saturated soil). In this way, 

for any type of soil, Θ varies from 0 to 1 and comparisons can be made more adequately. 

The same is also made when studying coil solution concentrations Ci in miscible 

displacement experiments, where a non-dimensional concentration C = (Ci – Co)/(Cmax-Co) 

is used, in which Co is the initial concentration and Cmax the maximum.  

Another interesting example of making variables dimensionless is presented by Hui 

et al. (1998), used in statistical analyses. If a Xt data set is transformed with respect to its 

mean (m) and standard deviation (s), according to        xt = [Xt − (m −2s)] / 4s                             

the transformed values xt become dimensionless with mean m = 0.5 and standard deviation 

s = 0.25. This transformation allows comparisons among different populations and is 

successfully used in state- space analyses. 

Tillotson and Nielsen (1984) in their review on DIMENSIONAL ANALYSIS and 

SCALING present several examples related to their applications in soil science. According 

to them, the foundation of dimentional techniques rests in the concept of similarity, and 

mention that three types of similarity are possible: geometric, kinematic and dynamic. The 

GEOMETRIC SIMILARITY refers to the size relationship between systems, as it was the 

case of the kingdoms of Brobdingnag and Lilliput. The KINEMATIC SIMILARITY refers 

to the relationships among motions in two systems. Tillotson and Nielsen (1984) present an 

example on the dispersion velocities of a solute in soil columns. The DYNAMIC 

SIMILARITY refers to force relationships in two systems, very much employed in 

engeneering anf hydrodynamics. They also describe the INSPECTIONAL ANALYSIS, 

which is another method to obtain non-dimensional quantities and scale factors. This 

analysis requires that physical laws governing the system are known. A very good 
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illustrative example is given by these authors on vertical movement of a solute in a soil 

column. 

    

Scales and Scaling 

 We already mentioned scales when presenting the “Adventures of Gulliver” and 

discussing physical similarity between object and prototype. Maps are also drawn in scale, 

for example, in a scale of 1:10,000, 1 cm2 of paper can represent 10,000 m2 in the field. 

Entities that differ in scale cannot be compared in a simple way. As we have seen, there is 

the problem of physical similarity.“Scaling”, frequently used in Soil Physics, is based on 

similarity concepts and on dimensional analysis. Miller & Miller (1956) were among the 

first giving the needed emphasis on these important tools through the concept of similar 

media applied to “capillary flow” of fluids in porous media. According to these authors, 

two media M1 and M2 are similar when the variables that describe the physical phenomena 

that occur within them, differ of a linear factor λ, which they called microscopic 

characteristic length, that relates their physical characteristics.  

 

Figure 4. A classical example of similarity in porous media arrangement. 
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The best way to visualize this concept is to consider M2 as an amplified (or reduced) 

photography of M1 by a factor λ. For these media, the particle diameter of one is related to 

the other by: D2 = λD1. The surface of this particle by: S2 = λ2S1, and its volume by V2 = 

λ3V1 (Figure 5). Under these conditions, if we know the flow of water through M1, would it 

be possible to estimate the flow through M2, based only on λ ? Using artificial porous 

media (glass beads ), Klute & Wilkinson (1958) and Wilkinson & Klute (1959) obtained 

results on water retention and hydraulic conductivity that validated the similar media 

concept. 
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( ) 1
2

2
1

2 A1.5Aou             5.12.25          25.2
A
A

==→=  

 

( ) 1
3

2
3

1

2 V1.5Vou             5.13.37          37.3
V
V

==→=  

 

Figure 5 – Spheres seen under the similar media concept. 

 After Miller and Miller’s contribution several studies appeared in the soil science 

literature which, however, did not significantly push ahead this concept. In a general way it 

was concluded that the similar media concept could not be applied to such heterogeneous 

materials as soils, since even working with very homogeneous glass beads media they had 

no full success. More than 10 years later, Reichardt et al. (1972) reappear with the subject, 

having success even with natural porous media, i.e., soils of a wide range in texture. We 

will present here their study in a very complete manner because it is a very good example 

of the use of the scaling technique. 

 

REICHARDT, NIELSEN AND BIGGAR SCALING 

 

They assumed that soils can be considered similar media, each one characterized by its 

factor λ which, at the beginning, they did not know how to measure. They started using 

inspectional analysis on the concept on horizontal water infiltration studies, using 

homogeneous soil columns of initial soil water content θi, applying free water at the 

entrance (x = 0) so that at this point the saturation water content θo was maintained 

thereafter: 
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θ = θi  ,  x > 0 ,  t = 0                                         (1) 

θ = θo  ,  x = 0 ,  t > 0                                         (2) 

( ) (3)                                                  
x

D
xt ⎥⎦

⎤
⎢⎣
⎡

∂
θ∂

θ
∂
∂

=
∂
θ∂  

 

where D(θ) = K(θ).dh/dθ; K(θ) is the soil hydraulic conductivity and h the soil water matric 

potential. 

 The results obtained in such experiments is summarized in Figure 6, showing the 

wetting front (xwf) advance which is linearly related to the square root of time t. 

 

Figure 6 – The experimental arrangement to study the horizontal infiltration using 
transparent acrylic columns for soil A and the advancement of wetting front as a function of 
the square root of time. 
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 Since for any soil the solution of this boundary value problem BVP is of the same 

type: x = φ(θ).t1/2, in which φ(θ) depends on the characteristics of each porous medium, 

would it not be possible to find a generalized solution for all media (considered similar) if λ 

of each soil would be known ? The procedure they used included the process of making all 

involved variables dimensionless, using the similar media theory (geometric and 

kinematic similarities) applied to each of the i soils, each with its λ1, λ2, ......λi. The soil 

water content θ and the space coordinate x were transformed as mentioned above in this 

text: 

 

( )
( ) (4)                                                   

io

i

θ−θ
θ−θ

=Θ  

(5)                                                        
x

xX
max

=  

     

 The matric soil water potential h was considered to be only the result of capillary 

forces: h = 2σ/ρgr or hr = 2σ/ρg = constant. If each soil i would have only capillaries of 

radius ri, and if the characteristic length λi would be proportional to ri, we would have: 

 

h1r1 =  h2r2  = ........=  hiri  = constant  

 

 If, among the i soils, we choose one as a standard soil, for which we make, 

arbitrarily, λ* = r* = 1 (one μm, or any other value), the constant above becomes h*r* = h*, 

which is the matric potential h* of the standard soil (Figure 7). Through dimensional 

analysis we can also make h* non-dimensional: 
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(6)                        
gh

........
ghgh

*h ii2211

σ
ρλ

==
σ
ρλ

=
σ
ρλ

=  

 

 

 

h1 = 14.4 cm

h2 = 9.6 cm

h3 = 7.2 cm

r1 = 0.1mm
r2 = 0.15 mm r3 = 0.2 mm

 

h1r1 = h2r2 = h3r3 = constant 

14.4 x 0.1 = 9.6 x 0.15 = 7.2 x 0.2 = 1.44 

 

Figure 7 – Similar glass capillaries in water. 

 

 The hydraulic conductivity K is proportional to the area (λ2) available for water 

flow (k = intrinsic permeability, L2), and using the known relation K = kρg/η or K/k = ρg/η 

= constant, we have for the i soils: 
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===
i

i
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2

1

1
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K

...........
k
K

k
K  constant 

 

(7)                                      
g 

K 
.........

g 
K 

g 
K 

*K 2
i

i
2
2

2
2
1

1

ρλ
η

=
ρλ

η
=

ρλ
η

=  

 

where K* is the hydraulic conductivity of the standard soil, assuming λ* = r* = k* = 1 

(Figure 8). 

 

=
λ

=
λ

=
λ 2

3

3
2
2

2
2
1

1 KKK  constant 

λl = 0.10 mm

λ2 = 0.15 mm

λ3 = 0.20 mm

Κl =2. 0 mm.dia-1

Κ2 =4.5 mm.dia-1

Κ3 =8. 0 mm.dia-1
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Figure 8 – Cross-sections of soil columns with their respective conductivities. 

 

 

 Through the definition of soil water diffusivity D = K.dh/dθ, it is possible to verify 

that the soil water difusivity D* is given by: 

 

(8)                                      
 
D 

.......
 

D 
 

D 
*D

i

i

2

2

1

1

σλ
η

==
σλ

η
=

σλ
η

=  

 

  

 To make equation 3 dimensionless it is now needed to make the time t 

dimensionless. In accordance to all other variables, we can have a time t* for the standard 

soil, as follows: 

 

( ) ( ) ( )
(9)                     

x 
t  

........
x 

t  
x 

t  
*t 2

 maxi

ii
2

 max2

22
2

 max1

11

η

σλ
==

η

σλ
=

η

σλ
=  

 

 It can now be seen that if we substitute θ by  Θ, x by X, t by ti and D by Di in 

equation 3, we obtain the differential equation for the standard soil, which differs from the 

equations of all other soils by factors λi, not seen in equation 10, but built-in the definitions 

of  t* and D*: 
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( ) (10)                                            
X

D
Xt

*
* ⎥⎦

⎤
⎢⎣
⎡

∂
Θ∂

Θ
∂
∂

=
∂
Θ∂  

 

subject to conditions: 

 

Θ = 0  ,  X ≥ 0  ,  t* = 0                                  (11) 

Θ = 1  ,  X = 0  ,  t* > 0                                  (12) 

 

the solution of which is: 

 

( ) ( ) (13)                                            t . X
2/1** Θφ=     

 It is interesting to analyze the non dimensional infiltration time of equations (9) and 

(13), in light of the physical similarity of the kingdoms of Liliput and Brobdingnag, which 

shows that to compare different soils (considered similar media), their times have to be 

different and dependent of λ which is a length ! We could even suggest that this fact 

contributes to explain how time is considered the forth coordinate, together with x, y and z, 

in the theories of Modern Physics. 

 By analogy with what was made with h and K, we can write: 

 

( )
=

σ
η

=λ==λ=λ
2

max
*

ii2211
xt

t......tt  constant 
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 Once the theory was established, Reichardt et al. (1972) looked for ways to measure 

λ for the different soils. The “Columbus Egg” was found when they realized that if the 

linear regressions of xi versus ti
1/2 for the position of the wetting front for each soil, should 

overlap to one single curve for the standard soil (X versus t*1/2), and that the factors used to 

rotate the line of each soil to the position of the line of the standard soil, could be used as 

characteristic lengths λi. This procedure is called FUNTIONAL SCALING. We know that 

straight lines passing through the origin: y = aix can be rotated over each other using the 

relation ai/aj of their slopes. Since in our case the lines involve a square root, the relation to 

be used is: 

 

(14)                                                       
a
a 2

*
i

*
i ⎟

⎠
⎞

⎜
⎝
⎛=

λ
λ  

Figure 9 shows na example of the functional scaling for three soils A, B and C. It is 

interesting to note that after scaling the water content profiles overlap so that only the 

shapes of these profiles become apparent. They show the intrinsic differences of the soil 

water retention characteristics of the different soils, since these profiles are different for 

sany, silty or clayey soils. 
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Figure 9 – Horizontal infiltration profiles for soils A, B and C, and their scaled profiles. 

 

With this relation Reichardt et al. (1972) found the values λi for each soil, taking arbitrarily 

as a standard the soil of fastest infiltration, for which they postulated λ* = 1. In this way, 

the slower the infiltration rate of soil i, the slower its λi. This way of determining λ as a 

scaling factor and not as a physical soil characteristic like the microscopic characteristic 

length of Miller & Miller (1956), facilitated the experimental part of the study and, more 

than that, opened the door for a much wider concept of scaling applied in other areas of Soil 

Physics. Reichardt et al. (1972) had only success in scaling D(θ) and a partial success in 
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scaling h(θ) and K(θ), the reason for this being the fact that soils are not true similar media. 

The success of scaling D(θ) lead Reichardt & Libardi (1973) to establish a general equation 

to estimate D(θ) of a given soil, by measuring only the slope ai of the wetting front advance 

x versus t1/2: 

 

( ) ( ) (15)                               .087,8 expa10 x 462,1 D 2
i

5 Θ=Θ −  

 

 Reichardt et al. (1975) also presented a method to estimate K(Θ) through the 

coefficient ai of equation (15); Bacchi & Reichardt (1988) used scaling techniques to 

evaluate K(θ) measurement methods. 

 

More recent developments in scaling 

Sposito (1998) edited a book on scale dependence and scale invariance with several 

applications of scaling techniques in land-surface hydrology, river networks, field soil 

water behavior, Richards equation, watershed modeling, heterogeneity in vadose-zone 

hydralogy, solute transport and several other topics. One important aspect that has to be 

mentioned is the application of scaling to problems related to spatial variability of soil 

properties. If a scaling factor is assigned to each site, like deviations from the mean, very 

disperse measurements coalesce to a single curve, as it can be seem on Figure 10 for 

saturated hydraulic conductivity. 
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Figure 10.  Left, unscaled hydraulic conductivity data; right, well coalesced scaled 

data. Taken from Sposito (1998). 

 

Another example of the use of scaling in miscible displacement experimentation 

was given more recently by Shukla et al. (2002), using the π products. 
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