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Introduction: 

One of the limitations to reach sustainable soil management is related to soil 

strength, which can be natural or due to the inadequate soil management. 

Different soil management has been altering the physical and mechanical soil 

properties (Barnes et al., 1971; Gupta et al., 1985; Larson et al., 1989; Soane and van 

Ouwerkerk, 1994; Dias Junior and Pierce, 1996ab, Dias Junior and Miranda, 2000, Horn 

et al., 2000; Dias Junior, 2000), causing soil structure degradation and restricting root 

penetration due to the insufficient root turgor pressure to overcome the soil mechanical 

resistance (Gysi, 2001).  

Soil structure degradation may be characterized by an increase in the soil bulk 

density and soil strength (Dias Junior et al., 1999); a decrease in the total porosity, size 

and continuity of the pores (Hillel, 1982; Servadio et al., 2001) and may limit nutrient 

uptake, water infiltration and redistribution, gas exchange, seedling emergency and root 

development (Tardieu, 1988; Smucker and Erickson, 1989; Bicki and Siemens, 1991; 

Dürr and Aubertot, 2000, Arvidsson, 2001; Ishaq et al., 2001) resulting in decreased 

yields (Arvidsson, 2001; Radford et al., 2001; Dauda and Samari, 2002), increased 

erosion and increased power requirement for tillage (Stone, 1987, Canillas and Salokhe, 

2002).  
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 The soil compression curves obtained from laboratory uniaxial compression test 

are frequently used in soil compressibility studies (Larson et al., 1980; Larson and 

Gupta, 1980; Bingner and Wells, 1992; O'Sullivan, 1992; MacNabb and Boersma, 1993; 

Dias Junior, 1994; Dias Junior and Pierce, 1996ab; Canarache et al., 2000). These 

curves describe the relationship between the logarithm of the applied pressure and bulk 

density or void ratio (Casagrande, 1936; Leonards, 1962; Holtz and Kovacs, 1981). The 

precompression stress is the pressure that divides the soil compression curves into a 

region of small, elastic and recoverable deformation (secondary compression curve) and 

a region of plastic and unrecoverable deformation (virgin compression curve) (Holtz and 

Kovacs, 1981; Jamiolkowski et al., 1985; Dias Junior and Pierce, 1995; Canarache et 

al., 2000). Thus, the precompression stress is an indicator of the maximum previously 

stress sustained by a soil (Holtz and Kovacs, 1981, Dias Junior and Pierce, 1995; 

Defossez and Richard, 2002) and also an indicator of the soil strength (Arvidsson, 

2001). Thus, in agriculture, application of stress greater than the precompression stress 

should be avoid in order to avoid unrecoverable soil deformation (Gupta et al., 1989; 

Lebert and Horn, 1991; Defossez and Richard, 2002).  

The precompression stress depends on several factors such as: changes in the 

total stress due to erosion and excavations, wetting and drying processes, soil texture, 

structure, and bulk density, soil management, organic matter, chemical alterations due 

to the weathering, precipitations, pH, ions exchange, etc. (Casagrande, 1936; 

Schmertmann, 1955; Crawford, 1964; Brumund et al., 1976; Holtz and Kovacs, 1981; 

Horn, 1988; Jose et al., 1989; Dias Junior and Pierce, 1995; McBride and Joosse, 1996, 

Veenhof and McBride, 1996; Kondo and Dias Junior, 1999; Silva et al., 1999 and other).  
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Methods for estimation of the precompression stress are available in the literature 

(Casagrande, 1936; Burmister, 1951; Schmertmann, 1955; Sällfors, 1975; Anderson 

and Lukas, 1981; Culley and Larson, 1987; Jose et al., 1989; Lebert and Horn, 1991; 

Dias Junior and Pierce, 1995; Veenhof and McBride, 1996 and McBride and Joosse, 

1996). Thus, the use of precompression stress in the agriculture studies is consolidated. 

Considering that the precompression stress is an indication of the soil strength 

(Arvidsson, 2001), of the maximum stress that should be applied to a soil in order to 

avoid soil structure degradation (Gupta et al., 1989; Lebert and Horn, 1991; Defossez 

and Richard, 2002), of the soil structure sustainability (Dias Junior et al., 1999) and a 

reduction in the precompression stress values may be used as an indicator of soil 

structure recover, the Bearing Capacity Model, which is the adjustment of the 

precompression stress as a function of volumetric water content or suction, may be used 

also to detected the soil structure changes trough time due to the different soil  

management. 

In addition, the Bearing Capacity Model has different uses in agriculture and for 

environment quality studies, such as: a) to estimate the maximum pressure that should 

be applied to the soil in order to avoid soil compaction, b) to evaluate the soil class and 

horizons susceptibility to compaction, c) to evaluate the soil management susceptibility 

to compaction, d) to evaluated the traffic effects on the soil structure, e) to assess the 

natural alleviation of the soil structure after a compaction event and f) to determine the 

natural soil mechanical resistance of the soil horizons that may impair the sustainable 

soil uses through time. 

It is well known that soil organisms play an important role in various processes 

related with soil structure improvement (Jones et al., 1997; Stork & Eggleton, 1992; 
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Robert & Chenu, 1992; Spain & Lavelle, 2001). However, relationships among soil 

organisms density and diversity, as well as their management, on soil strength/structure, 

has not being found in literature as measured by precompression stress suggesting, 

therefore, a lack of information about the influence of the soil organisms in the soil 

bearing capacity. 

 

Objective: 

Present a methodology to obtain the Bearing Capacity Model. 

 

Methodology Development 

To obtain the Bearing Capacity Model, undisturbed soil samples with 0.064 m of 

diameter and 0.0254 m of height should be collected at a specific depth of interest using 

the Uhland soil sampler (Figures 1 and 2). The Collected undisturbed soil sample should 

have some soil in the top and in the bottom of the metal ring. 

 

Figure 1:  Uhland soil sampler and aluminum ring. 
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Figure 2: Undisturbed soil sample and the aluminum ring. 

 

These undisturbed soil samples should be initially saturated in a tray with water 

up to 2/3 of the sample height for 24 hours and air dried in laboratory until a specific 

volumetric water content is obtained or submit the undisturbed soil sample to a specific 

water suction using tension plate assembly and pressure plate apparatus and then used 

in the uniaxial compression test according to steps 1 to 11 (Bowles, 1986; Wolff, 1993): 

1. Cut off the portion of the soil sample remaining above the metal ring using a wire 

saw or knife. Place a glass plate over the ring and turn the undisturbed soil sample 

over. Cut off the soil extending beyond the bottom of the ring in the same manner as 

described for the surface portion. Place another glass plate on this surface, and 

again invert the undisturbed soil sample to an upright position,  

2. Record all identifying information for the soil sample, such as project number, and 

other pertinent data, on the data sheet (Data sheet 1). Measure and record the 

height and the internal diameter of the ring before the sampling to facilitate the 

calculations relative to the volumetric water control in the laboratory. After the 

undisturbed soil sample is prepared, record the weight of the soil sample plus tare, 
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and from the soil trimmings obtain a representative sample for specific gravity 

determination.  

3. Fit the bottom porous stone into the base of the consolidometer (Figure 3). Place a 

filter paper over the porous stone. Place the ring with the undisturbed soil sample 

therein on top of the porous stone.  

 
Figure 3. Consolidometer unit. 

 

4. Place a filter paper on top of the undisturbed soil sample, and then place the top 

porous stone and the loading plate in position. 

5. Place the consolidometer containing the undisturbed soil sample in the loading 

device and attached the dial gage, and adjust it so that the stem of the dial indicator 

is centered with respect to the soil sample. Adjust the dial indicator to permit a 

maximum travel of the gage. 

6. Adjust the loading device until it just makes contact with the undisturbed soil sample.  

7. Read the dial indicator, and record the reading on the Data Sheet 1.  

8. At a convenient starting time, apply the first pressure increment and simultaneously 

take deformation readings at elapsed times of 0.25. 0.5, 1, 2, 4, 8, 15, 30, 120 

minutes, etc.  

9. The pressure sequence used in the uniaxial compression tests is 25, 50, 100, 200, 

400, 800 and 1.600 kPa. Each pressure should be applied until 90% of the maximum 
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deformation is reached (Taylor, 1948) and then the pressure should be increased to 

the next level. For the Brazilian soils 15 minutes has been enough to reach 90% of 

the maximum deformation in the partially saturated soils (Figure 4). 

10.  The 90% of maximum deformation is determined by plotting the dial readings on an 

arithmetic scale (ordinate) versus square root of the corresponding elapsed time 

(abscissa) and a straight line should be drawn through the data points in the initial 

part of the curve obtained until this line intercepts the y axis (dial readings). A second 

straight line is drawn from this intersection with all abscissas 1.15 times as large as 

corresponding values on the first line. The intersection of this second line and the 

laboratory curve is the point corresponding to 90% consolidation (Taylor, 1948) 

(Figure 4).  
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Figure 4. Curve of square root of time versus dial reading 

 

11.  When the applications of all pressures are finished, removed the applied pressure 

and the dial indicator and disassemble the apparatus and then oven dry the wet soil 
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sample to constant weight or during 24 hours at 105-110°C and weight and record in 

the Data Sheet 1 the dry weight of the soil sample plus tare.  

 

To obtain the Bearing Capacity Model, the procedure below should be followed. 
  

12.  Plot the bulk density obtained for each applied pressure on a decimal scale 

(ordinate) and the corresponding applied pressure in a logarithmic scale (abscissa) 

obtaining the soil compression curve (Figure 5).  
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Figure 5. Soil compression curve. Source: Dias Junior (1994). 

 

13. From the soil compression curves the precompression stress (σp) should be 

determined as a function of the volumetric water content (ɵ) or as a function of the 

suction according to Dias Junior & Pierce (1995) (Table 1 and Figure 6) or using the 

Casagrande (1936) method (Figure 7) or another methods available in the literature.  
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Table 1. Spreadsheet for determination of the precompression stress (σp) from soil 
compression curves. Source: Dias Junior & Pierce (1995). 

Stress Log Stress ρb ρb vcc ρb reg 
25 1.3979 1.3905 1.2897 1.3845 
50 1.6960 1.4444 1.3825 1.4502 

100 2.0000 1.5097 1.5160 1.5160 
200 2.3010 1.5878 1.5681 1.5847 
400 2.6021 1.6712 1.6609 1.6474 
800 2.9031 1.7537 1.7537 1.7131 

1600 3.2041 1.8465 1.8465  
Method 1 (Suction <= 100 kPa)                             Method 3 (Suction > 100 kPa)  

σp = 151 kPa  σp = 238 kPa 
ρb = 1,53 Mg m-3  ρb = 1,61 Mg m-3 
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Figure 6. Computer screen of the soil compression curve showing the precompression 

stress (σp) obtained using method 1 and method 3. Source: Dias Junior 
(1994). 
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Figure 7. Casagrande (1936) method. 

 

14. Then, a regression analyses should be accomplished using graphical software, to 

obtain the Bearing Capacity Model, which is the adjustment of precompression 

stress (σp) as a function of volumetric water content (ɵ) or suction (Figure 8).  
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Figure 8. Bearing Capacity Model. Source: Dias Junior et al (2005) and Oliveira et al 

(2003) 

  

15.  Plot in the bearing capacity model the 95% confidence interval of the population 

(Figure 9). 
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Figure 9 – Bearing Capacity Model and the criteria used to analyze the effect of the soil 
management on the precompression stress. Source: Dias Junior et al (2005) 

 



 12

16. Considering bearing capacities in agriculture, the application of pressures larger than 

the precompression stress should be avoided in order to avoid additional soil 

compaction, the Bearing Capacity Model (Figure 8), was then divided into three 

regions to evaluate the soil management effects on the soil structure according to 

Dias Junior et al (2005). The considered regions (Figure 9) are: a) the region where 

the precompression stress values determined after the soil management are larger 

than the higher limit of the confidence interval, being considered as the region where 

additional soil compaction happened; b) the region where precompression stress 

determined after the soil management are between the higher and lower limits of the 

confidence intervals. Although, the soil samples in this region did not suffer soil 

compaction, this region indicates the soil samples that might suffer soil compaction in 

the next operations if the applied pressures are larger than the higher limit of the 

confidence interval and c) a region where the precompression stress values 

determined after the soil management are smaller than the lower limit of the 

confidence interval. 

 

17. To analyze the soil management effect on the precompression stress through time, a 

new set of undisturbed soil samples should be taken and submitted to the uniaxial 

compression test and the precompression stress should be determined as was 

described before. Then, the precompression stress should be plotted in the Bearing 

Capacity Model as a function of volumetric water content or suction at field condition 

(Figure 10). 
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Figure 10. Bearing Capacity Model for a Yellow Argisol at 0-0.03 m depth. The symbols 
represent the values of the precompression stress determined in soil 
samples collected in 1996, 1998, 2000, 2002 and 2004, in the area where the 
Forwarder operations was done in 1996. (Source: Dias Junior, 2005). 
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COMPRESSIBILITY TEST – Data Sheet 1 

DATE ______/______/______ 

 
 

Project: ______________________________   Particle Density = ____________    (g cm-3)    

Company: ____________________________  Sample number: _____________            

Depth:_______________________________ 

Diameter of ring: _______________________        

Initial height of ring: _____________________  ɵ (Volumetric water content) = _________  (kg 

kg-¹) 

Tare + M (wet soil) = ____________________  Initial Bulk Density    = __________   (Mg m-3) 

Tare + MS (dry soil)= ____________________       σp = __________   (kPa) 

Tare = _______________________________    Dsσp = __________   (Mg m-3) 

 

       
              Pressure = 25 kPa                                           

Clock 
Time 

Elapsed 
time 

Dial 
Reading 

                        0”                   (     ) 
                      15”                   (     ) 
                      30”                   (     ) 
                       1’                    (     ) 
                       2’                    (     ) 
                       4’                    (     ) 
                       8’                    (     ) 
                     15’                    (     ) 
 
                    
 
                     Pressure = 100 kPa                                           

Clock 
Time 

Elapsed 
time 

Dial 
Reading 

                        0”                   (     ) 
                      15”                   (     ) 
                      30”                   (     ) 
                       1’                    (     ) 
                       2’                    (     ) 
                       4’                    (     ) 
                       8’                    (     ) 
                     15’                    (     ) 
         

 
                    Pressure = 50 kPa                                           

Clock 
Time 

Elapsed 
time 

Dial 
Reading 

                        0”                   (     ) 
                      15”                   (     ) 
                      30”                   (     ) 
                       1’                    (     ) 
                       2’                    (     ) 
                       4’                    (     ) 
                       8’                    (     ) 
                     15’                    (     ) 
 
 
 
                     Pressure = 200 kPa                                           

Clock 
Time 

Elapsed 
time 

Dial 
Reading 

                        0”                   (     ) 
                      15”                   (     ) 
                      30”                   (     ) 
                       1’                    (     ) 
                       2’                    (     ) 
                       4’                    (     ) 
                       8’                    (     ) 
                     15’                    (     ) 
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          Pressure = 400 kPa                                           

Clock 
Time 

Elapsed 
time 

Dial 
Reading 

                        0”                   (     ) 
                      15”                   (     ) 
                      30”                   (     ) 
                       1’                    (     ) 
                       2’                    (     ) 
                       4’                    (     ) 
                       8’                    (     ) 
                     15’                    (     ) 
 
 
                     Pressure = 1600 kPa                                           

Clock 
Time 

Elapsed 
time 

Dial 
Reading 

                        0”                   (     ) 
                      15”                   (     ) 
                      30”                   (     ) 
                       1’                    (     ) 
                       2’                    (     ) 
                       4’                    (     ) 
                       8’                    (     ) 
                     15’                    (     ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
                
                      Pressure = 800 kPa                                           

Clock 
Time 

Elapsed 
time 

Dial 
Reading 

                        0”                   (     ) 
                      15”                   (     ) 
                      30”                   (     ) 
                       1’                    (     ) 
                       2’                    (     ) 
                       4’                    (     ) 
                       8’                    (     ) 
                     15’                    (     ) 
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EXEMPLE OF THE COMPUTATION DATA 
 

Depth 15 cm ρb i= 1.48 kg dm-3 
Ring Nº= 16   Hs= 1.35 cm 

Rep 1   Hi= 2.52 cm 
Ring+M= 281.25 g ∅ = 6.41 cm 

Ring+Ms= 269.66 g Ui=     0.0962 kg kg-1 
Ring= 149.21 g ei= 0.86  

Gs= 2.76  ɵ=             0,1424 m3 m-3 
Pressure Reading Reading Delta H Delta E       Void   Height Volume     Ds 

 (kPa) (pol-4)  (cm)  (cm)         Index     (cm) dm3 Kg dm-3 
                  
          0.8634 2.5200 0.0813 1.4812 

25  351 0.0892 0.0892 0.0659 0.7975 2.4308 0.0784 1.5355 
50  441 0.1120 0.0229 0.0169 0.7806 2.4080 0.0777 1.5501 

100  590 0.1499 0.0378 0.0280 0.7526 2.3701 0.0765 1.5748 
200  762 0.1935 0.0437 0.0323 0.7203 2.3265 0.0751 1.6044 
400  1100 0.2794 0.0859 0.0635 0.6568 2.2406 0.0723 1.6659 
800  1573 0.3995 0.1201 0.0888 0.5680 2.1205 0.0684 1.7602 
1600  2019 0.5128 0.1133 0.0838 0.4842 2.0072 0.0648 1.8596 

 

M = Weight of wet soil; Ms = Weight of dry soil; Gs = Specific gravity of solids; ρb i = Initial bulk density; Hs = Height of solids; Hi = Initial 

height of the soil sample; φ = Diameter of the soil sample; Ui = Initial volumetric water content; ei = Initial void ratio; ɵ - volumetric water 

content. 
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Bulk density (kg dm-3)  

ρb i = 
V
Ms , where v = volume of the undisturbed soil sample. 

Example: ρb i = 
52.2

4
)41,6(

21.14966.269
2

×

−

π
 = 1.48 kg dm-3 

Height of solids (cm)  

Hs = 
wGsA

Ms
γ××

, where, A = area; γw = unit weight of water 

Example: Hs = 
176.2

4
)41,6(

21.14966.269
2

××

−

π
 = 1.3524 cm 

Moisture Content (kg kg-1) 

U = 
Ms
Ma , where Ma = weight of water. 

Example: U = 
21.14966.269
66.26925.281

−
− = 0.0962 kg kg-1 

 
Void Index 

ei = 
Hs

HsHi −  

Example: ei = 
3524.1

3524.152.2 − = 0.8634 

 
Reading (cm) = Reading (pol-4) x 0.000254 
Example: Reading (cm) = 351 x 0.000254 = 0.0892 cm 
 
Delta H (cm) = Reading (i + 1) – Reading (i) 
Example: Delta H for 25 kPa = 0.0892 cm  

       Delta H for 50 kPa = 0.1120 – 0.0892 = 0.0228 cm 
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Delta e = 
Hs

DeltaH  

Example: Delta e =
3524.1
0892.0 = 0.0659 

 
Void Index = Void Index(i) – delta e(i +1) 

Example: Void Index for 25 kPa = 0.8634 – 0.0659 = 0.7975  

       Void Index for 50 kPa = 0.7975 – 0.0169 = 0.7806 

 
Height (cm) = H(i) – Delta H (i + 1) 

Example: Height for 25 kPa = 2.52 – 0.0892 = 2.4308  

       Height for 50 kPa = 2.4308 – 0.0229 = 2.4079 
 
Volume (dm-3) = Area(i) x H(i) 

Example: Volume initial = 001.052.2
4

)41.6( 2

××π = 0,0813 dm-3 

      Volume for 25 kPa = 001.04308.2
4

)41.6( 2

××π = 0,0784 dm-3 

 
Volumetric Water Content (m3 m-3) 

ɵ = U x ρb i 

 

Example: ɵ = 0.0962 x 1.4812 = 0.1425 m3 m-3 
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