

2166-Handout

College on Medical Physics. Digital Imaging Science and Technology to Enhance Healthcare in the Developing Countries

13 September - 1 October, 2010

Evaluating X-RAY Tube and Generator Performance: Demo for Practical Quality Control

Slavik Tabakov King's College London United Kingdom

EVALUATING X-RAY TUBE AND GENERATOR PERFORMANCE: DEMO for PRACTICAL QUALITY CONTROL (QC)

Dr Slavik Tabakov

Dept. Medical Eng. & Physics, King's College London slavik.tabakov@kcl.ac.uk, slavik.tabakov@emerald2.co.uk

OBJECTIVES

- Principles of Quality Control (QC)
- QC equipment
- Filtration assessment
- Consistency assessment
- Accuracy and linearity assessment
- Assessment of kVp ripple and waveform
- X-ray tube radiation leakage
- Focal spot measurement
- AEC assessment
- Dental equipment QC
- Mammographic equipment QC
- Other QC tests
- Automatic protocol with EXCEL

QC in Diagnostic Radiology

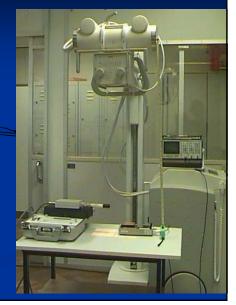
- PURPOSE: To ensure continuing production of diagnostic images with optimum quality, using minimum necessary dose to the patient.
- FREQUENCY: QC should include checks and test measurements on all parts of the imaging system at intervals not exceeding one year.
- UK practice for most common DR equipment:
 - Radiographic (X-ray tubes) once per year

Main steps for a QC survey in Diagnostic Radiology

- General X-ray tube& generatorassessment
- Image quality assessment
- Specific parameters assessment
- Quality Control protocols

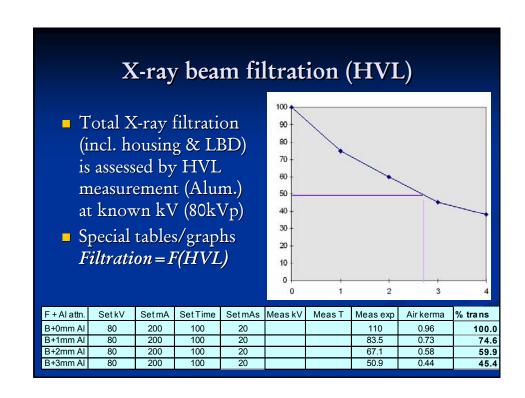
QC equipment for Radiography

- Dosimeter (ion.ch.)
- kVp detector (non-invasive)


CALIBRATED!

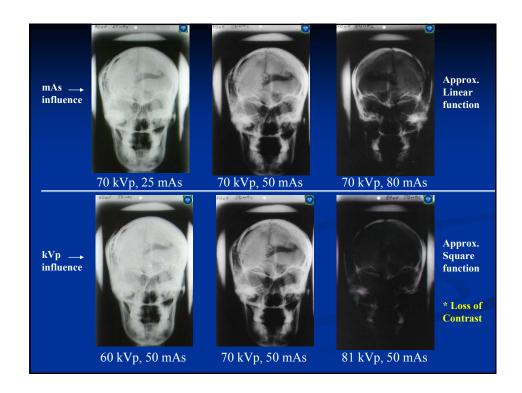
- Oscilloscope (with memory)
- (Timer, mA meters)
- Aluminium plates (4x1mm+2x0.5mm)
- Collimator/beam alignment tool (cassette)
- Focal spot test tool (film in envelope)
- (Densitometer, Sensitometer)

QC of the X-ray tube/generator


- The X-ray field must be collimated to the smallest reasonable size.
- All measurements must be performed at the middle of the X-ray field.

X-ray tube and generator main tests

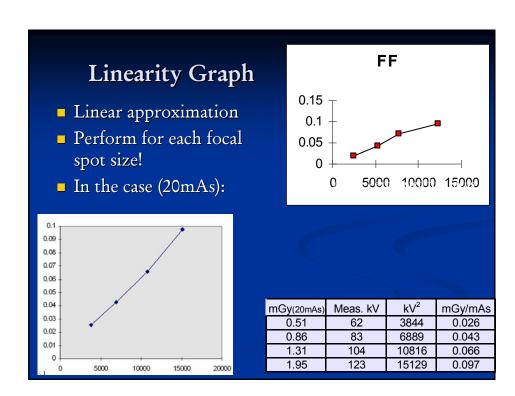
- X-ray beam filtration
- Dose output consistency, kV/mA influence
- kVp consistency, accuracy, ripple
- Timer consistency, accuracy
- X-ray beam/light beam alignment
- Radiation leakage of tube housing
- Focal spot size assessment
- Automatic Exposure System performance


Total X-ray filtration must not be less than:

- 0.5 mm of Al (or 0.03 mm Mo) for mammography
- 1.5 mm of Al for equipment using voltage up to 70 kVp (most often Dental Radiology)
- 2.0 mm of Al for equipment producing above 70kVp and up to 100 kVp
- 2.5 mm of Al for equipment producing voltages above 100 kVp (most of the Diagnostic Radiology X-ray equipment)
- LBD filtration Al plates MUST be fixed!

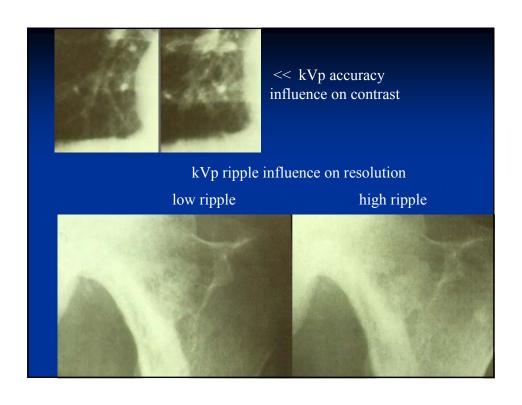
Dose Output/kVp/Time Consistency

- Min 4 exposures with identical parameters 100*(st.dev)/(average) for all measurements
- Separate calculations for Dose, kVp, Time
- In the case below: Dose consist.=3.2%; kVp consist.=0.6%; Time consist.=0%

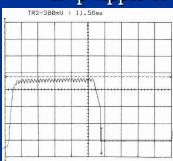

Focus	Set kV (kV)	Set mA (mA)	Set Time (ms)	Set mAs (mAs)	Meas kV (kV)	Meas T (ms)	Meas exp (mR)	Air kerma (mGy)
В	80	200	100	20	82	105	104	0.90
В	80	200	100	20	83	105	106	0.92
В	80	200	100	20	83	105	106	0.92
В	80	200	100	20	83	105	105	0.91

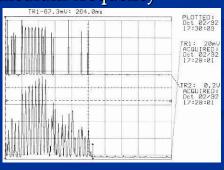
kVp accuracy and Spec.Dose = F(kV) Linearity

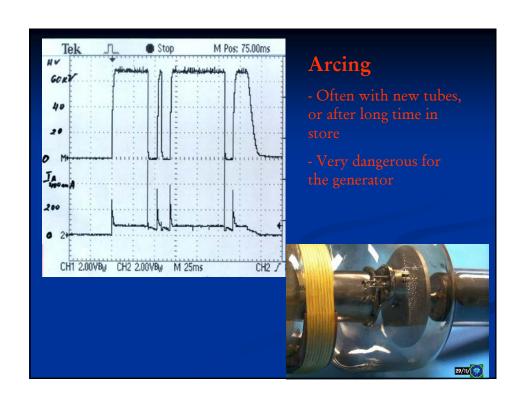
- Min 4 measurements with varia kVp 100*(mean error)/(real value)
- In the case below kVp accur.=3.4%
- Specific Dose : Dose/mAs (mGy/mAs) @ ...kV
- Linearity graph: X-kV² Y-(mGy/mAs)

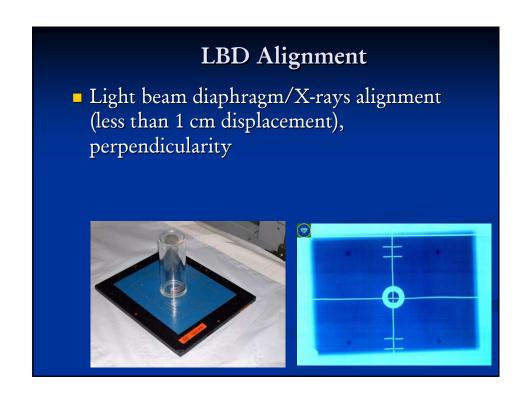

							FDD(cm)=	100
Focus	Set kV	Set mA	Set Time	Set mAs	Meas kV	Meas T	Meas exp	Air kerma
	(kV)	(mA)	(ms)	(mAs)	(kV)	(ms)	(mR)	(mGy)
В	60	200	100	20	62	101	59	0.51
В	80	200	100	20	83	105	98.5	0.86
В	100	200	100	20	104	103	151	1.31
В	120	200	100	20	123	103	224	1.95

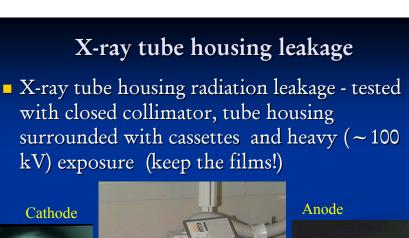
Output & kV variation with mA; Timer accuracy

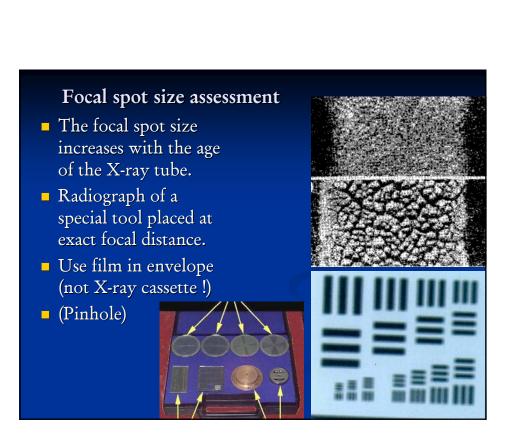

- Dose output and kVp vary with the mA 100*st.dev/average for mGy/mAs or kVp
- In the case below: O'put var. with mA = 9.5% and kVp var with mA = 4.2%
- Timer accuracy = -1.6%

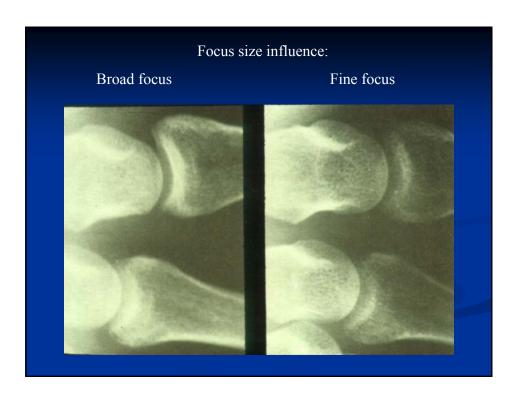

SetkV	Set mA	Set Time	SetmAs	Meas kV	Meas T	Meas exp	Air kerma	Spec.Output
(kV)	(mA)	(ms)	(mAs)	(kV)	(ms)	(mR)	(mGy)	mGy/mAs
80	25	100	2.5	83	107	18.4	0.16	0.064
80	300	100	30	84.7	105	198	1.72	0.057
80	500	100	50	90	103	305	2.65	0.053
80	200	20	4	83	19	20.5	0.18	0.045
80	200	400	80	83	390	440	3.82	0.048
80	200	800	160	83	780	814	7.07	0.044

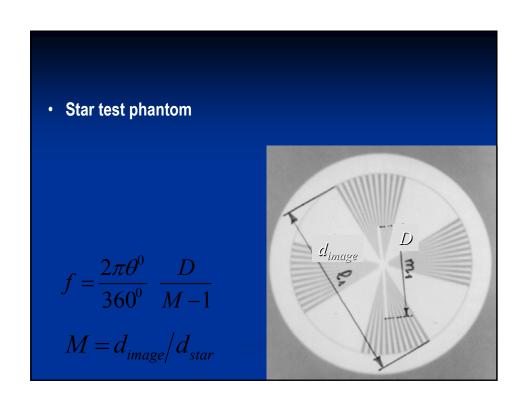


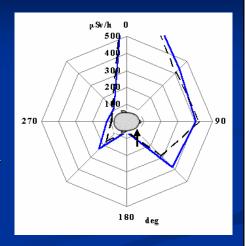

Dose output & kVp waveforms kVp ripple


- Waveforms -powerful method for analysis of X-ray tube and generator performance
- Abnormal (high) ripple blurs the image (often indicates exhausted tube; arcing)
- kVp ripple of medium frequency

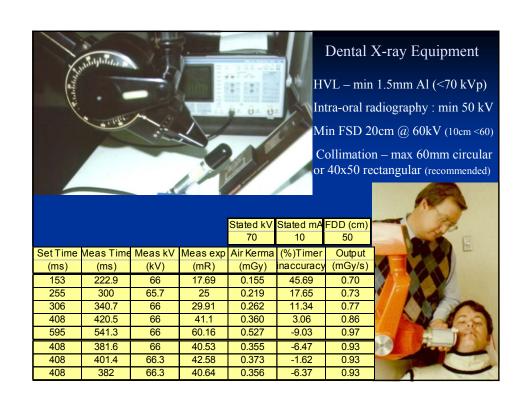


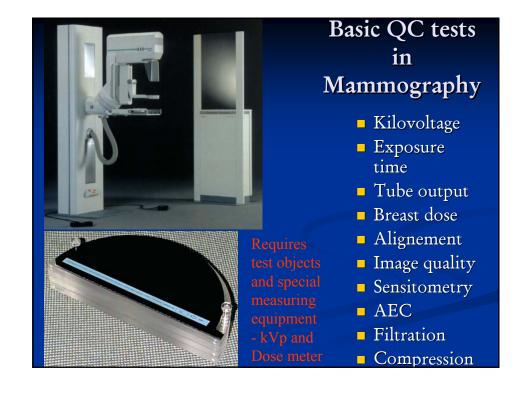




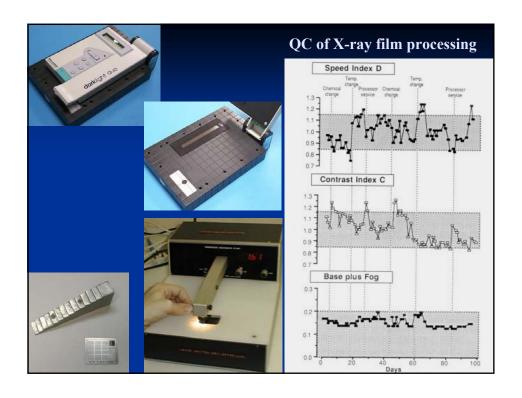


QC of special X-ray equipment


- Dental X-ray equip. scatter rad.chart =>
- Orthopan tomography
- Mammography Xray equipment
- Classical tomography
- Capacitor discharge X-ray equipment



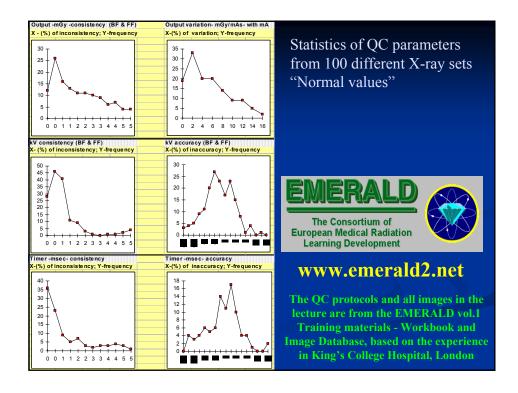
x position (cm)


Basic QC tests in Dental/OPG X-ray Equipment

- Kilovoltage
- Timer
- Dose (end of cone)
- Dose distribution
- Dose/kV waveform
- Filtration (HVL)
- Field (end of cone)
- OPG Slits/Alignement
- Scatter radiation
- Movement/Mechanics

Focu	s to chamb	er distance	in cm	43				Calculated
Target /	Set kV	Set mA	Set Time	Set mAs	Meas kV	Meas T	Air kerma	Output @1n
Filter	(kV)	(mA)	(ms)	(mAs)	(kV)	(ms)	(mGy)	(Gy/mAs)
		, ,		of output with		, ,	, , , ,	,
Mo/Mo	26	100	500	50	26.2	503	9.75	36.06
Mo/Mo	28	100	500	50	28.2	503	12.31	45.52
Mo/Mo	30	100	500	50	29.9	502	15.15	56.02
Mo/Mo	32	100	500	50	31.9	501	18.17	67.19
Mo/Rh	28	100	500	50	27.7	503	7.39	27.33
Mo/Rh	30	100	500	50	28.9	502	9.28	34.32
Mo/Rh	32	100	500	50	30.8	503	11.31	41.82
/								

Automatic QA protocols with EXCEL


- Raw data page
- Calculative page (hidden)
- Result page
- Image quality and graphics pages
- Statistical page
- Summary and Recommendation page
- Additional protocols for AEC and other specific X-ray systems

							al storage os	cilloscope
Gould 450	s/n 144000	6, and an	MDH electr	ometer s/n	3011with 6	cc chamb		
Focus	SetkV	SetmA	Set Time	SetmAs	Meas kV	Meas T	FDD(cm)= Meas exp	100 Air kerm
Focus	(kV)	(mA)	(ms)	(mAs)	(kV)	(ms)	(mR)	(mGy)
В	60	200	100	20	62	101	59	0.51
В	80	200	100	20	83	105	98.5	0.86
В	100	200	100	20	104	103	151	1.31
В	120	200	100	20	123	103	224	1.95
F	50	100	200	20	50	202	46	0.40
F	70	100	200	20	73	205	101	0.88
F	90	100	200	20	88	202	167	1.45
F	110	100	200	20	111	204	221	1.92
В	80	200	100	20	82	105	104	0.90
В	80	200	100	20	83	105	106	0.92
В	80	200	100	20	83	105	105	0.91
В	80	25	100	2.5	83	107	18.4	0.16
В	80	300	100	30	84.7	105	198	1.72
В	80	500	100	50	90	103	305	2.65
В	80	200	20	4	83	19	20.5	0.18
В	80	200	400	80	83	411	440	3.82
В	80	200	800	160	83	780	814	7.07
		HalfVa	lue Layer M	easureme	nts are sho	wn below		
B+0mm Al	80	200	100	20			114	0.99
B+0mm AI	80	200	100	20			110	0.96
B+1mm Al	80	200	100	20			83.5	0.73
B+2mm Al	80	200	100	20			67.1	0.58
B+3mm Al	80	200	100	20			50.9	0.44
B+4mm Al	80	200	100	20				#VALUE

FDD(cm)=	100								
Meas exp	Air kerma		Meas'		mGy/mAs		%age kV		
(mR)	(mGy)	Meas kV	kV^2	mGy/mAs	per kV^2	grad'	Accuracy	Accuracy	
59	0.51	62	3844	0.025636	6.67E-06	5.64E-06	3.333333		
98.5	0.86	83	6889	0.042798	6.21E-06	5.81E-06	3.75		
151	1.31	104	10816	0.06561	6.07E-06	7.35E-06	4		
224	1.95	123	15129	0.097328	6.43E-06		2.5		
46	0.40	50	2500	0.019987	7.99E-06		0		
101	0.88	73	5329	0.043885	8.24E-06	8.45E-06	4.285714		
167	1.45	88	7744	0.072562	9.37E-06	1.19E-05	-2.22222		
221	1.92	111	12321	0.096025	7.79E-06	5.13E-06	0.909091		
104	0.90	82	6724	0.045188	6.72E-06				
106	0.92	83	6889	0.046057	6.69E-06				
105	0.91	83	6889	0.045623	6.62E-06				
18.4	0.16	83	6889	0.063958	9.28E-06			7	
198	1.72	84.7	7174.09	0.057354	7.99E-06			5	
305	2.65	90	8100	0.053009	6.54E-06			5 3	
20.5	0.18	83	6889	0.044536	6.46E-06			-5	
440	3.82	83	6889	0.047795	6.94E-06			2.75	
814	7.07	83	6889	0.04421	6.42E-06			-2.5	
114	0.99	IVL mm of A	% trans					#VALUE!	
110	0.96	1	100						
83.5	0.73	2	74.5535714						
67.1	0.58	3	59.9107143						
50.9	0.44	4	45.4464286						
	#VALUE!	5	#VALUE!						

Parameters		Expected	Measured	Assessme
Radiography M	odo			
Kaulography W	Jue			
Beam/LBD Aligne	ment displacement (cr	n) <1	<1	Accept
Bucky centering	displacement (cr		<1	Ассерт
Dubity containing	uiopia do inidia (di			
Focus size (mm)	Broad Focus-(BF) 1	1X1	Accept
()	Fine Focus-(FF)	0.6	0.6x0.6	Accept
O'put consistency	BF) (%) inconsist.	<5	3.2	Normal
O'put var'n with mA		<10	9.49	Normal
O'put var'n with kV			4.2	Normal
	V(BF (uGy/mAs) @ 1m		42.74	Normal
Lin.Grad.with kV^2	(BF) (mGy/mAs/kV^2)		6.27E-06 15	
O'put var'n with kV			8.4	Normal
	V(FF (uGy/mAs) @ 1m		57.47	Normal
Lin.Grad.with kV^2	(FF) (mGy/mAs/kV^2)		8.48E-06 40)
kVp consistency (BF) (%) inconsist.	<5	0.6	Good
kVp accuracy (BF	(%) inaccuracy	-10 <a<10< td=""><td>3.4</td><td>Good</td></a<10<>	3.4	Good
kVp accuracy (FF)	(%) inaccuracy	-10 <a<10< td=""><td>0.7</td><td>Good</td></a<10<>	0.7	Good
	St.dev.		2.31	
kVp var'n with mA		<10	4.25	Good
Ripple at ~ 100 kV	BF) +/- kVp ampl.		5	Accept
	(BF) (%) inconsist.	<5	0.00	Good
Timer accuracy (B		-10 <a<10< td=""><td>-1.58</td><td>Good</td></a<10<>	-1.58	Good
	St.dev		3.96	
First Half Value La			2.7	Accept
Inferred Total Filtra	tion (mm of Al eq')	>2.5	2.6	Accept
Labelling				Accept
Stated filtration	(mm of Al eq')	2.5		
Stated Total Filtrat	ion (mm of Al eq')			
Calcul. max. leaka	ge (mGy/h)@1m	<1		Accept
Calcul, Illax, leaka	ge kingyina im	`		Accept

					and Phy				
Radiolog	ical Pro	tection	and Q	uality A	Assuran	ce Rep	ort		
	1					 	i i		
Hospital/Clinic:	Brook Ho	enital		U nit typ	<u> </u>	Overcouch	L	_	
Hospital/Cillic.	BIOOKTIO	Spilai		O IIII typ	· .	Overcouch			
Department:	X-ray			Generat	or/Manuf.:				
Room/Unit:	ļ				Type:	DR3T/500			
Koom/Unit:	3b				/ Type:	SRO 25 50 675449	 	-	
Date of QA survey:	22/3/93			Referen		BXOB3B.03	33		
	CILBARA	ADV AND	DECO	NABAE NIC	ATIONS				
	20 MINI	AKT ANL) KECU	MIMEND	AHUNS				
The X-ray generat However, the X-ray direction. We would routine visit.	beam is al	bout 1cm di	splaced fro			BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm di	splaced fro			BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm di	splaced fro			BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm di	splaced fro			BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis	splaced fro			BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis ou the bring t	splaced fro	ttention of		BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis ou the bring t	splaced fro	ttention of		BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis ou the bring t	splaced fro	ttention of		BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis ou the bring t	splaced fro	ttention of		BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis ou the bring t	splaced fro	ttention of		BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis ou the bring t	splaced fro	ttention of		BD in longitue	dinal		
However, the X-ray direction. We would	beam is al	bout 1cm dis ou the bring t	splaced fro	ttention of		BD in longitue	dinal		

