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A Josephson junction based nonlinear oscillator
(Siddiqi et al. PRL 2004, 2005)

Hysteresis in modulated systems 



High sensitivity to 
control parameter
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Bifurcation amplifier: quantum readout 

Real switching:
fluctuation-induced smearing 

Bifurcation point:
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High sensitivity to 
control parameter

Approaching the bifurcation point

Bifurcation point:
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Thermal systems: Kurkijarvi (1972), Victora  (1989). General case, far from equilibrium: MD & Krivoglaz  (1979, 1980) 
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Noise: delta-correlated in slow time. 
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If noise is Gaussian, the switching rate is

Switching rate near bifurcation points

Near bifurcation points one of the motions is 
slow, a soft mode universal behavior of 
the escape rate

A multivariable system can be mapped 
onto a 1D overdamped Brownian particle
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thermal noise: D=kBT



For resonant modulation, close to bifurcation points. 

Scaling for a modulated classical oscillator
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Josephson junctions (Siddiqi et al., 2005)

Different scaling,                 ,  occurs near a cusp on the bifurcation curve (observed by Aldridge & 
Cleland, 2005) and for a parametrically modulated oscillator (observed by Stambaugh & Chan, 2006) 
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Quantum switching: tunneling

Low temperatures: conventionally, escape occurs via tunneling 

activation

tunneling
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Driven oscillator: quantum noise

Relaxation: emission of excitations in the bath )(tF

Oscillator Hamiltonian:

+ coupling to a thermal bath 
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An elementary collision is short,         . Classically, it gives 
a  “kick” to the oscillator coordinate and momentum

“Noise intensity” for a quantum oscillator is the total rate of spontaneous emission / absorption

a Brownian particle colliding with molecules
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The picture applies only near bifurcation points; one dynamical variable + short collisions; 
ultimate squeezing  classical dynamics with quantum noise
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Scaling in quantum activation

Quantum noise leads to switching via an “overbarrier transition” even for  T  0
“quantum activation”
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semiclassical behavior near 
bifurcation points      

(5/4 < 3/2)Quantum tunneling rate near FB1 is |ln W|  Stun / h  (F-FB1)5/4    



Quantum activation: JBA experiment
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Spectroscopy of driven oscillators

Change to the rotating frame, dimensionless variables:
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Classical picture
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Classical and quantum fluctuations:

�Small-amplitude fluctuations about the attractors

� Inter-attractor switching; generally, the transition 
rates W12 and W21 are exponentially different

Stambaugh & Chan, 2006
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Spectroscopy of driven oscillators

Change to the rotating frame, dimensionless variables:
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Classical picture

222 PQA ��

Classical and quantum fluctuations:

�Small-amplitude fluctuations about the attractors

� Inter-attractor switching; generally, the transition 
rates W12 and W21 are exponentially different

Stambaugh & Chan, 2006
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Power spectra



Oscillator-to-qubit coupling:                                (Jaynes-Cummings) or  

Assume fast oscillator relaxation compared to the qubit. Coupling-induced qubit decay rate and Tq: 

Other spectra

�Absorption of extra field (MD & Krivoglaz, 1979)

�Light transmission spectra (Drummond & Walls, 1980) 
[optical cavity with two-level atoms, Bonifacio & Lugiato, 1978] 

� Emission by a quantum oscillator

� Spectrum “seen” by a resonantly coupled qubit
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Quasienergy spectrum and quantum temperature
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quasi-energy

Underdamped oscillator in the rotating frame: decay rate 
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Quasienergy spectrum and quantum temperature
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Underdamped oscillator in the rotating frame: decay rate 
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Quantum fluctuations: distribution over the quasienergy states = the eigenstates of g, 
with effective quantum temperature Teff --- different spectral line intensities for transitions 
toward/away from the stable state (“anti-Stokes” and “Stokes” sidebands)
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Mode temperature

strongly dependent on 

resonator pumping

Parametric spontaneous

down-conversion !
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Effective temperature of the pumped resonator

Related to « quantum activation »

M.I. Dykman and V.N. Smelyanskiy, JETP 67, 1769 (1988)

M. Marthaler and M.I. Dykman, PRAL 73, 042108 (2006) 

M. Ong et al., experiment and theory, to be published 
[thanks to P. Bertet for the slide and the discussion of 
the spectra of driven oscillators]



Fine structure

Quasienergy levels are nonequidistant
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Line spacing is proportional to the 
dimensionless Planck constant

Linewidth linearly increases with 
the line number. What if it is not 
that small?



Oscillator “hops” between overlapping partial spectra

ω(0) ω(n)

Interference of transitions
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interference of transitions

To find a spectrum, add complex transition amplitudes and square the absolute value, not  just add squared amplitudes

need time ~(Δ)-1 to resolve transitions ; 
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nth level occupation weighted with 
the transition matrix element

Explicit solution is obtained for the power spectrum of the driven oscillator
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The method of coupled partial spectra applies both where the 

coupling is due to dissipation and/or to dephasing. Example:

attachment/detachment of molecules to a nanoresonator

Attachment-detachment problem
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Attachment: molecule influx Detachment: 1�� NN
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Eigenfrequency with N molecules attached: 

Frequency change per molecule: resmol0 2/ Mm�� ��
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Poisson noise

()  is formed as a result of interference of partial spectra with different N. It could be found in the 
explicit form (MD, Khasin, Portman, & Shaw, 2010)



For                         - a single Lorentzian peak at                             with halfwidth 
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�Escape of modulated quantum oscillators occurs via quantum activation

�The exponents and prefactors of switching rates scale as a power of the  
distance to the bifurcation point, both for classical Gaussian noise and for 
quantum activation

�The spectra of modulated oscillators can vary from a single peak to a peak with 
pronounced fine structure. A similar behavior is displayed by the spectra of 
nanomechanical resonators with attaching-detaching molecules.

�The method of coupled partial spectra can be used to describe both relaxation 
and dephasing of high-Q oscillators

Conclusions
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