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Carbon, as we know it
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Carbon nanotubes: a more exciting form of carbon

diamond
fullerene (C )60

graphite / graphene nanotube



Carbon nanotubes

• different production methods;
often:

• use small catalyst particles
• hot gas, with carbon feed

(e.g. CH4)
• nucleation of tube structure

• many different structures
• single-wall, double-wall,

multi-wall
• zigzag, armchair, chiral

(how the sheet is “wrapped
together”)

image source: Wikipedia



Mechanical properties of carbon nanotubes

• stiffer than steel

• resistant to damage from physical
forces

• very light

• Young’s modulus E = F/A
ΔL/L :

ECNT � 1.2TPa, Esteel � 0.2TPa

• Density:

ρCNT � 1.3 g
cm3 , ρAl � 2.7 g

cm3

• (still) “material of dreams”

http://www.pa.msu.edu/cmp/csc/ntproperties/



Suspended carbon nanotube sample fabrication
“the old way of doing things”

AFM markers
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SW-CNT

electrodes catalyst + CVD grown nanotubes

electrodes
SW-CNT

electrodes as etch mask
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p doped Si
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A. K. Hüttel et al., New J. Phys. 10, 095003 (2008)



Low-temperature transport measurements

• Tunnel barriers between leads and nanotube

• Low temperature kBT � e2/C: formation of a quantum dot
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Vibration modes of carbon nanotubes
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• radial breathing mode(s)

• stretching (longitudinal) mode:
hν ∝ L−1

hν = 1100 . . .110μeV,
ν = 270 . . .27GHz

(for 100nm . . .1μm)

• bending (transversal) mode:
hν ∝ L−2

hν = 10 . . .0.1μeV,
ν = 2.4GHz . . .24MHz

(for 100nm . . .1μm)

hν ∝ d , also tension-dependent

purely electronic excitations have different energy scale

A. K. Hüttel et al., New J. Phys. 10, 095003 (2008)



The stretching mode – visible in electronic transport
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• Low-energy excitations

• Equally spaced, h̄ω = 140μeV

• Identical for different charge
states

• Stretching mode as harmonic
oscillator

S. Sapmaz et al., PRL 96, 026801 (2006)



Electron-vibron coupling, Franck-Condon physics
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no effect for g < 0.1
additional steps in I(Vsd) for g > 0.1

phonon blockade of transport for g > 1, Vsd < gh̄ω0

S. Braig and K. Flensberg, PRB 68, 205324 (2003)
M. C. Luffe et al., PRB 77, 125306 (2008), K. Flensberg, March Meeting 2006 slides



Vibrational excitations observed so far
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S. Sapmaz et al., PRL 96, 026801 (2006); A. K. Hüttel et al., New J. Phys. 10, 095003 (2008);
A. K. Hüttel et al., PRL 102, 225501 (2009); R. Leturcq et al., Nat. Phys. 5, 327 (2009)



L = 250nm SC nanotube, few-hole regime
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Egap = 0.2eV → d = 3.7nm, h̄ωRBM � 7.8meV, maybe (0,46), ε � 6.2meV
length L = 250nm → expected h̄ωbend � 0.002meV, h̄ωstretch � 0.44meV

bending lines→ shifting potential minima, DQD-like properties

A. K. Hüttel et al., PRL 102, 225501 (2009)



Stretching mode in SET and cotunneling (1≤ Nh+ ≤ 2)
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• excitations in SET, positive slope:
harmonic, Δε = 0.42meV� h̄ωstretch

• harmonic excitations in cotunneling!

• Cotunnel-assisted sequential
tunneling, “CO-SET”

cotunneling
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sequential tunneling

A. K. Hüttel et al., PRL 102, 225501 (2009)



Reminder: cotunneling – second-order process

• current in Coulomb blockade:
“several electrons tunneling at once”

• two-electron processes:

• elastic:

• inelastic (green arrow):
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Cotunnel-assisted sequential tunneling (CO-SET)

• inelastic cotunneling, followed by a
tunnel-out process

cotunneling
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• requires energy storage

• this is the process we’ve seen

• requires energy storage:
tunnel-out must be faster than
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Cotunnel-assisted sequential tunneling (CO-SET)
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• first observed and explained by Schleser et al. ∼2005

electronic excitations in GaAs/AlGaAs quantum dots

R. Schleser et al., PRL 94, 206805 (2005)



Measurement detail
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• CO-SET current sets in at additional (electronic) excited state X

• Tunnel rates coupling an 2h state to 1h ground state:
small for 2h ground state, large for 2h excited state X

• Real-time transport theory calculations, M. Leijnse & M. Wegewijs

• Vibration mode is pumped by multiple inelasic cotunnel processes
involving X (e.g. sequence (1)→ (2)→ (3))

A. K. Hüttel et al., PRL 102, 225501 (2009); M. Leijnse & M. Wegewijs, PRB 78, 235424 (2008)



Numerical calculation
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• CO-SET current sets in at additional (electronic) excited state X

• Tunnel rates coupling an 2h state to 1h ground state:
small for 2h ground state, large for 2h excited state X

• Real-time transport theory calculations, M. Leijnse & M. Wegewijs

• Vibration mode is pumped by multiple inelasic cotunnel processes
involving X (e.g. sequence (1)→ (2)→ (3))

A. K. Hüttel et al., PRL 102, 225501 (2009); M. Leijnse & M. Wegewijs, PRB 78, 235424 (2008)



CO-SET process requires energy storage, nonequilibrium

cotunneling
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• Vibration mode must remain excited until tunnel-out

• Vibrons are pumped as in a three-level laser!

• Comparison of timescales & tunnelling rates
−→ first (weak) lower boundary for mechanical quality factor
−→ Qstretch � 30

• Known values for transversal CNT mode:
Qbend,RT � 2000, Qbend,20mK � 150000

A. K. Hüttel et al., PRL 102, 225501 (2009); A. K. Hüttel et al., Nano Lett. 9, 2547 (2009)



Open question #1: Nature of the excited state X

• simplest possibility: orbital excited state of the nanotube quantum dot
• different orbital wavefunction
• different tunnel couplings

−→ our model idea should work fine

• alternative explanation: potential side minimum / double quantum dot
• possible since the suspended nanotube is partially covered by the contacts
• bending resonance lines in Coulomb diamonds: shifting potential minima

−→ our model idea should still work fine!



Some speculations about a “phaser”

• idea: use analogy with the 3-level laser

• current pumps vibration via the electronic
excited state

• use a double quantum dot to generate
this level structure

• feed a mechanical mode faster than it
can decay, population inversion

• ?



Open question #2: Frequency doubling
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ħω=0.425meV ħω=0.72meV? ħω=0.81meV

• pos. slope SET excitations: h̄ω = 0.42meV

• CO-SET and neg. slope SET excitations: h̄ω � 0.8meV

• few-carrier system

• adding a hole redistributes the entire charge on the nanotube

• up to now, all measurements of the Franck-Condon sidebands were in
the metallic limit



Some speculations about 1D Wigner crystals

• few charge carrier limit

• one-dimensional chain of electrons or holes

• different charge number −→ completely different charge distribution

• influence of charge distribution on the electrostatic forces inducing the
vibrations

• dynamic interaction?

• electronic system much faster than vibration
−→ can regard mechanical oscillator fixed for each point in time

• ?



The team at Molecular Electronics & Devices, Delft
and theory friends

Thanks!

Herre van der Zant Benoit Witkamp Hari Pathangi Menno Poot

& Samir Etaki, Yaroslav Blanter, Fabio
Pistolesi, Ivar Martin, Sami Sap-
maz, Pablo Jarillo-Herrero, Raymond
Schouten, Hidde Westra, ...

Martin Leijnse Maarten Wegewijs



Meanwhile, things have moved on a bit...

... and me as well, back to Bavaria

• new research group at
Universität Regensburg

• spin injection and spin
transport in carbon nanotubes

• carbon nanotubes with
superconducting contacts

• and now (since funding has finally come):

carbon nanotubes as
nano-electromechanical
hybrid systems

• postdoc position available
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Institute for experimental and
applied physicsPostdoc position in NEMS available!

You have already been working successfully with millikelvin RF equipment in your PhD research, 
and have a good understanding of low temperature physics as well as gigahertz technology? 
Ideally, you are coming from a research group specialized in superconductor-related 
mesoscopic physics, quantum information, or cavity QED? You are interested in contributing to 
a young and dynamic team, trying to push the limits of what is doable in nano-electromechanical 
systems?

Then you might be just about right here. Your job will be to build up a low-temperature high 
frequency measurement setup in a state-of-the-art dilution refrigerator, and conduct 
measurements on coupled superconductor-carbon nanotube systems. You will be supported 
by a PhD student and a MSc student. We expect your work to lead to reeeally great publications! 

Your salary will be based on the German TV-L E13. Regensburg university has a strong focus on 
nanophysics, in particular on spin phenomena and carbon-based systems. The natives are friendly, 
and while our university buildings feature classic 1965 concrete, the medieval city of Regensburg 
is a jewel on its own, with a vibrant young atmosphere. Both mountains and Munich airport are 
not far away.

Interested? Have a look at http://www.physik.uni-r.de/forschung/huettel/ and contact 
Andreas K. Hüttel (e-mail: andreas.huettel@physik.uni-r.de) for more information! 




