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Nanomechanical instabilities 

• bending & buckling of nanotubes 
 
 
 
 
 

 
de Heer group, Nature 1999 

Falvo et al., 
Nature 1997 

wrinkling under compression electrostatic deflection 

• rippling & wrinkling of suspended graphene 
 
 
 
 

 
 
 Meyer et al. Nature 2007 

rippling  wrinkling  

Lau group, Nature Nanotech (2009) 
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Euler buckling instability 

L. Euler (1744) 

Elastic rod buckles when 
compression exceeds  
critical force Fc 
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Euler buckling 
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Nanomechanical buckling 
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Carr et al., APL 2003 

Euler buckling of SiO2 nanobeams 
 
�  nanobeams released from Si substrate 
     by reactive ion etching  
�  caused by SiO2/Si strain 

• buckling of nanobeams 

•  probing nanomechanical quantum fluctuations  

e.g. Werner & Zwerger, EPL 2004 

�  smearing of the Euler instability due to quantum flucutations 
 

�  quantum coherence in nanobeams 



7 

Euler instability in NEMS 
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Question:  
• interplay between mechanical and electrical degrees  
                                                               of freedom 
 

� modification of Coulomb blockade by Euler instability? 
� backaction of Coulomb blockade on Euler? 

 
Motivation:  
• pronounced mechanical nonlinearities 
• strong electron-vibron coupling close to instability 

quantum dot:  
semiconducting/metallic island 

S D 

e.g. 
• nanobeam 
• carbon nanotube 
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Theory of Euler instability 
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 F<Fc                 F>Fc 

Superconductor Euler instability 

force 

� buckling is continuous instability 

� buckled state for F>Fc : cFFX ��~

X 
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Theory of buckling instability 

action: 
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Theory of buckling instability 

with frequency 

• restrict theory to unstable mode 
   with mode amplitude X 
 

• include anharmonic corrections 

critical force 

anharmonicity 

• Euler instability 
• “critical“ slowing down 
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Quantum vs classical 
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S D 

critical slowing down: 
 
            I >> �  
 
  sufficiently close to the instability  

classical Langevin dynamics EXACT 
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Electron-vibron coupling 
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Capacitive coupling Intrinsic coupling 

nXgHc ˆ
2

2�nXHc ˆ��

intrinsic electron-vibron  
                              coupling 

See also: 
E. Mariani, FvO, PRL (2008) 
             & arXiv:1008.1631 

Compare suspended graphene : 

Geim group arXiv:1008.2522 

current-induced force: 

Xcurr nF ˆ���
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capacitive 

electron-vibron 
coupling 

 
intrinsic 

electron-vibron 
coupling 

 
 

 
semiconductor  
quantum dot 

• more easily realized 
experimentally 
 

• more pronounced 
effect on Coulomb 
blockade 

 
          

 
 

metallic  
quantum dot 

 

• consistent w/ 
symmetry of 
Euler instability 
 

• more pronounced 
effect on Euler 
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Strong e-vib coupling 
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nXHc ˆ��

∆� =1 
addition of a single  
electron 

displacement 
∆� = � ���⁄  

eff. gate voltage 

diverges at instability ! 

eff. shift in gate voltage 

Δ
� = �� ���⁄ → ∞ 
phonon blockade 

gate voltage 

bias 
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Strong enhancement  
         of phonon blockade 
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below the instability above the instability 
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Quantum analog:  
Franck-Condon blockade 
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Theoretical prediction 
Koch & FvO, PRL (2005) 
Koch, Raikh, FvO, PRL (2005) 
Koch, FvO, Andreev, PRB (2006) 

Experimental observation 
R. Leturcq, C. Stampfer, K. Inderbitzin,  
L. Durrer, C. Hierold, E. Mariani,  
M.G. Schultz, FvO, K. Ensslin, 
Nature Phys. 5, 327 (2009) 
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Strong enhancement  
         of phonon blockade 
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• gap increases sharply near Fc 
 

• increase limited by quartic term 
 
• relative increase stronger for 

weaker e-vib coupling 

• Coulomb diamond shifts in gate 
voltage 

 
• small shift below instability 

 
• orders of magnitude larger shift 

on buckled side   
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Temperature effects 
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gap observable as long as � ≪ gap 

bias 

cu
rr

en
t 
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Analogy with Landau theory 
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Euler instability Landau theory 

Curie law �~�/(� − ��) 

�~ �/� �/� at � = �� 

displacement X                 order parameter m 
 
force    ��~ F-Fc                 red. temperature (Tc-T)/Tc  



20 

Effect of offset charges 
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42
2

42
ˆ)( XXmnXXV
X

��� ���

so far:        is of order 
                           unity 
 
in general,      can take on  
any value due to „offset“ 
charges:  
 
 
 
analogous to symmetry- 
breaking field in Landau 
theory 

X
n̂

X
n̂

�� ≈ ��  
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Full Langevin dynamics 

Xcurr nF ˆ��current-induced force 

adiabatic limit 

Non-equilibrium Born-Oppenheimer approximation: 

�� �  compute        at   
fixed X 

first corrections to adiabatic limit in �0/��

retardation due  
to slow vibrational  

dynamics: 
 

frictional 
force 

thermal & shot  
noise of 
         : 

   
fluctuating 

force 

X
n̂

conservative  
average force 

),()()( eff tXFXFXXX �� ��� ���
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Langevin equation 

Nano-opto-electromechanics, Trieste           September 6 - 10, 2010 

Occupation       follows from Boltzmann-Langevin  
equation  

X
n̂

tunneling rates 
into & out of  
quantum dot 

perturbative treatment of Poison bracket: 

�(�) =
�

�Γ
�� �� � 

damping 

��(�)��(�!) =�"#

$
�� � 1 − �� �  

fluctuations 
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Fokker-Planck equation 
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Boltzmann equation for           : %&(�, �) 

small: 

�e: intrisinc damping; accounts for Q of vibron�
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Consequences of fluctuations 
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phonon blockade more pronounced  
• for low Q 
• slow oscillator  
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Intrinsic coupling 
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metallic quantum dot: 

0 

1 

VG 

n(X) 

• effect of e-vib coupling: VG VG - gX2/2 

-V/2 V/2 

)()(eff XgXnXF ��nXgHc ˆ
2

2�
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Current-induced potential 

)
4
1(

2
)( 42

curr gXXV
V
gxV �� �X

ngXF ˆcurr ��

stabilizes  
X=0 

destabilizes  
X=0 

compare to bare vibron Hamiltonian 

unstable X4 term (at small X) when V<g2/2��

more significant  
at small bias 

Mean-field theory: 
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Analogy with tricritical points

Tricritical point Euler instability
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• valid for “small” X2

• V controls sign of X4 term

• region of metastability

6
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Discontinuous Euler instability 

V 

VG 
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Transport 

(a)-(f): increasing F 

mean-field theory full Langevin dynamics 

classical phonon blockade 

“tricritical” blockade 
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Conclusions 

� Euler instability as paradigm of mechanical instability 
 

� “critical slowing down” makes problem inherently  
   classical, and allows for asymptotically exact solution  
 
� capacitive coupling/semiconductor dot: strong  
   enhancement of phonon blockade 
  
� intrinsic coupling/metallic dot: tricritical Euler  
   instability 

Nanoelectromechanics near mechanical instabilities 


