

2164-11

Workshop on Nano-Opto-Electro-Mechanical Systems Approaching the Quantum Regime

6 - 10 September 2010

Euler Buckling Instability in Nanoelectromechanical Systems

Felix von OPPEN

Freie Univ. Berlin Dahlem Center for Complex Quantum Sys. Arnimallee 14, Dahlem, D-14195 Berlin GERMANY

PROJEKTTRÄGER FÜR DAS Bundesministerium

Euler buckling instability in nanoelectromechanical systems

Collaborators

G. Weick. F. Pistolesi, E. Mariani, FvO, PRB 81, 121409(R) (2010)

G. Weick, F. Pistolesi, FvO, in preparation

Nanomechanical instabilities

- bending & buckling of nanotubes
 - electrostatic deflection

wrinkling under compression

Falvo et al., Nature 1997

 rippling & wrinkling of suspended graphene wrinkling rippling

Lau group, Nature Nanotech (2009)

Euler buckling instability

Elastic rod buckles when compression exceeds critical force F_c

L. Euler (1744)

Euler buckling

Nano-opto-electromechanics, Trieste

September 6 - 10, 2010

Nanomechanical buckling

buckling of nanobeams

Euler buckling of SiO₂ nanobeams

- nanobeams released from Si substrate by reactive ion etching
- > caused by SiO_2/Si strain

Carr et al., APL 2003

- probing nanomechanical quantum fluctuations
 - smearing of the Euler instability due to quantum flucutations
 - quantum coherence in nanobeams

e.g. Werner & Zwerger, EPL 2004

Question:

- interplay between mechanical and electrical degrees of freedom
 - > modification of Coulomb blockade by Euler instability?
 - backaction of Coulomb blockade on Euler?

Motivation:

- pronounced mechanical nonlinearities
- strong electron-vibron coupling close to instability

Theory of Euler instability

> buckling is **continuous** instability

> buckled state for
$$F > F_c$$
: $X \sim \pm \sqrt{F - F_c}$

Nano-opto-electromechanics, Trieste September 6 - 10, 2010

Theory of buckling instability

- restrict theory to unstable mode with mode amplitude X
- include anharmonic corrections

$$H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4$$

critical force $F_c = \kappa_{\rm eff} (2\pi/L)^2$ anharmonicity $\alpha = (\pi/2L)^4 F_c L$

with frequency
$$\omega^2 = (\kappa_{\text{eff}}/\sigma)(2\pi/L)^4(1-F/F_c)$$

• Euler instability
• "critical" slowing down

Freie Universität Berlin

Quantum vs classical

Nano-opto-electromechanics, Trieste September 6 - 10, 2010

Electron-vibron coupling

Capacitive coupling

$$H_c = \lambda X \hat{n}$$

current-induced force:

$$F_{curr} = -\lambda \langle \hat{n} \rangle_X$$

Intrinsic coupling

intrinsic electron-vibron coupling

$$H_c = \frac{g}{2} X^2 \hat{n}$$

Compare suspended graphene :

 $\rho \sim T^{2}$ Geim group arXiv:1008.2522
See also:
E. Mariani, FvO, PRL (2008)
& arXiv:1008.1631

100

T (K)

50

1/μ (Vs/m²) 1'0

	capacitive electron-vibron coupling	intrinsic electron-vibron coupling
semiconductor quantum dot	 more easily realized experimentally more pronounced effect on Coulomb blockade 	
metallic quantum dot		 consistent w/ symmetry of Euler instability more pronounced effect on Euler

Strong e-vib coupling

Strong enhancement of phonon blockade

below the instability

above the instability

Quantum analog: Franck-Condon blockade

Theoretical prediction Koch & FvO, PRL (2005) Koch, Raikh, FvO, PRL (2005) Koch, FvO, Andreev, PRB (2006)

Nano-opto-electromechanics, Trieste September 6 - 10, 2010

Strong enhancement of phonon blockade

- gap increases sharply near F_c
- increase limited by quartic term
- relative increase stronger for weaker e-vib coupling
- Coulomb diamond shifts in gate voltage
- small shift below instability
- orders of magnitude larger shift on buckled side

gap observable as long as $T \ll \text{gap}$

Analogy with Landau theory

so far: $\langle \hat{n} \rangle_X$ is of order unity

in general, $\langle \hat{n} \rangle_X$ can take on any value due to "offset" charges:

$$V(X) = \lambda X \langle \hat{n} \rangle_{X} + \frac{m\omega^{2}}{2} X^{2} + \frac{\alpha}{4} X^{4}$$

analogous to symmetrybreaking field in Landau theory

Non-equilibrium Born-Oppenheimer approximation:

Occupation $\langle \hat{n} \rangle_X$ follows from Boltzmann-Langevin equation

perturbative treatment of Poison bracket:

$$\gamma(X) = \frac{\lambda}{m\Gamma} \partial_X \langle \hat{n} \rangle_X \qquad \langle \delta F(t) \delta F(t') \rangle = \frac{2\lambda^2}{\Gamma} \langle \hat{n} \rangle_X (1 - \langle \hat{n} \rangle_X)$$

damping fluctuations

Boltzmann equation for $\mathcal{P}_n(X, t)$:

$$\partial_t \mathcal{P}_n = \{\mathcal{H}_n, \mathcal{P}_n\} - (-1)^n \Gamma_{01}(X) \mathcal{P}_0 + (-1)^n \Gamma_{10}(X) \mathcal{P}_1$$

small: $\mathcal{P}_0(X, P, t) = \frac{\Gamma_{10}(X)}{\Gamma(X)} \mathcal{P}(X, P, t) - \delta \mathcal{P}(X, P, t)$
 $\mathcal{P}_1(X, P, t) = \frac{\Gamma_{01}(X)}{\Gamma(X)} \mathcal{P}(X, P, t) + \delta \mathcal{P}(X, P, t)$

$$\partial_t \mathcal{P} = -\frac{P}{m} \partial_X \mathcal{P} - F_{\text{eff}}(X) \partial_P \mathcal{P} + \frac{\eta(X) + \eta_e}{m} \partial_P (P \mathcal{P}) + \left(\frac{D(X)}{2} + \eta_e k_{\text{B}} T\right) \partial_P^2 \mathcal{P}$$

 η_e : intrisinc damping; accounts for Q of vibron

phonon blockade more pronounced

- for low Q
- slow oscillator

Intrinsic coupling

metallic quantum dot:

• effect of e-vib coupling:

$$V_G \rightarrow V_G - gX^2/2$$

$$n_0(x) = \begin{cases} 1, & v_g(x) > v/2, \\ \frac{1}{2} + \frac{v_g(x)}{v}, & -v/2 \le v_g(x) \le v/2 \\ 0, & v_g(x) < -v/2 \end{cases}$$

Mean-field theory:

compare to bare vibron Hamiltonian $H_{\rm vib} = \frac{P^2}{2m} + \frac{m\omega^2}{2}X^2 + \frac{\alpha}{4}X^4$

unstable
$$X^4$$
 term (at small X) when $V < g^2/2\alpha$

Freie Universität

Tricritical point

$$f = \frac{1}{2}r\phi^2 + u_4\phi^4 + u_6\phi^6$$

Euler instability

$$V_{\text{tot}} = \frac{1}{2} \left(m\omega^2 + \frac{gV_+}{2V} \right)^2 X + \left(\frac{\alpha}{4} - \frac{g^2}{8V} \right) X^4$$

- valid for "small" X^2
- V controls sign of X^4 term
- region of metastability

mean-field theory full Langevin dynamics (a)-(f): increasing F v 0.5 v 0.5 v 0.5 g 0.5 -0.50 v 0.5 v 0.5 e v 0.5 v 0.5 v 0.5 0.5 -0.50 0 0 v_g classical phonon blockade v0.5 "tricritical" blockade

Nanoelectromechanics near mechanical instabilities

- > Euler instability as paradigm of mechanical instability
- "critical slowing down" makes problem inherently classical, and allows for asymptotically exact solution
- capacitive coupling/semiconductor dot: strong enhancement of phonon blockade
- intrinsic coupling/metallic dot: tricritical Euler instability