

2169-1

Conference on Molecular Aspects of Cell Biology: A Perspective from Computational Physics

11 - 15 October 2010

Tackling Large Macromolecular Complexes: The Interplay of Electron Microscopy and Protein Crystallography

> S. ONESTI Sincrotrone Trieste S.C.p.A. Trieste Italy

Strada Costiera 11, 34151 Trieste, Italy - Tel.+39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it

Imperial College London

Tackling large macromolecular complexes: the interplay between electron microscopy and protein crystallography.

A case study: structural studies of MCM helicases

> Silvia Onesti silvia.onesti@elettra.trieste.it

A storage ring operating between 2.0 and 2.4 GeV produces synchrotron light with wavelengths ranging from infrared to X-rays.

A new fourth generation light source based on Free Electron Laser is now being developed (FERMI@Elettra)

Overview

- An introduction to single particle electron microscopy: strengths and weaknesses
- The biological problem:
 - DNA replication in eukaryotes
 - MCM helicases
 - Structural studies of MCM helicases
 - How does it work
 - How is it loaded onto DNA
- A comparison between macromolecular crystallography (MX) and single particle electron microscopy (EM)

Single particle electron microscopy Sample preparation

Samples for EM have to be carefully prepared:

- they have to be exposed to high vacuum and therefore fixed with special chemicals or frozen
- have to be prepared in extremely thin sections since electrons have limited penetrating power
- samples are often exposed to heavy metals since contrast depends on the atomic number (staining)

Here we focus on EM applied to single molecules

Single particle electron microscopy Sample preparation: negative staining vs cryo

Negative staining

- (usually 0.5% uranyl acetate)

 Simple procedure
- Quick to check samples
- High contrast
- Low radiation damage
- Can do tilt series
- Dehydration
- Artefacts due to uneven
- deposition of stain
- Distortions
- Preferential orientation?
- Low resolution (20 Å)

Cryo

- More complex preparation
- Time consuming
- Low contrast
- Radiation damage→low dose
- Cannot tilt
- Native, hydrated state
- 3D structure preserved
- In solution, no distortion
- Random orientation
- Rapid freezing can trap transient states
- High resolution (up to 3Å?)

Single particle electron microscopy

The problems

- image is 2D projection of original 3D object
- 3D structure can be determined from a set of views at different orientations
- radiation damage is the ultimate limit on resolution to avoid destroying the sample, one uses very low doses, obtaining very noisy images

Therefore we have two problems

- getting a signal out of very noisy images
- getting a 3D structure out of 2D projections

Single particle electron microscopy Dealing with noise - averaging

A single protein molecule gives only a weak and ill-defined image. Combine the information from many molecules so as to average out the random errors in the single images.

Averaging large number of particles massively increases the signal/ noise. However, we have to make sure we are averaging views with the same orientation!

3D reconstruction

Class averages are analysed to define their relative orientation (not easy!) and Euler angles are assigned to each class average. Once a preliminary solution is found, the views are combined to generate a 3D object. The 3D map is then re-projected in the directions indicated by the Euler angles, and each re-projection is compared to the corresponding class average.

The process is cycled and the 3D model refined until convergence.

Required for initiation and for the progression of the replication fork

Structure & function of MCM helicases The big questions...

- How does MCM work? How is the energy from ATP hydrolysis used for walking along the DNA and opening up the helix?
- How is MCM loaded onto DNA?

- MCM helicases

- How does it work

A comparison between MX and EM Macromolecular crystallography

MX advantages

Atomic resolution possible High size limit (ribosome - 2.6 MDa; viruses up to 66 MDa, 750 Å) Rapid analysis of protein-ligand complexes (unless there are conformational changes!)

MX disadvantages

Requires large amount of protein (less with robots) Need for crystals is a huge bottleneck Phase problem Crystal packing – possible artifacts? Difficult to study conformational changes

A comparison between MX and EM

When they compete directly (such as the structure of the ribosome or RNA polymerase) MX gives far more information.

But EM can be very useful

- where it is difficult to produce enough sample for MX
- for large complexes purified directly from cells
- for large molecules or assemblies that are difficult to crystallise
- for intrinsically polymorphic samples
- to look at a number of different physiological states and observe conformational changes

Plus EM techniques are still in their "infancy" – we can expect new developments:

- in computational techniques
- In EM tomography

