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Surface Spark Discharges

Research on transient surface discharges is focused mostly on the gas dynamic,
electrical and radiative physics applicable to the engineering of novel plasma sources

These have immediate use in low inductance switches, pulsed light sources, optical
pumps for intense excimer lasers, and broadband sources of intense UV- VUV radiation.

Hardly is any attention directed to spectroanalytical applications of these sources:
However special varieties of surface discharge plasmas propagating on dielectrics in
gas/air have potential for trace spectroanalysis of non-conducting matrices and surfaces.

Direct solid-state analysis (hardly available for non-conducting materials) is characterized
by many benefits: AES approach is attractive due to its simplicity, rapidity, accuracy, and
ease with which it is possible to automate emission spectrochemical analysis.
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Sliding Spark Plasma (1/2)

Pulsed transient plasma propagating
along surface of dielectric matrix 1,
enforced between pair of electrodes in _'
air at atm. pressure.

Ernission Intensity /Arbitrary units
[ L

Matrix-excitation driven by geometry-
and source opto-electric-, modulated e-
impact excitation.

A transient creeping plasma develops

in the evanescent depth of dielectric Short-lived DC arcs develop high

material. power density in a uniform field, and
proceed at a considerably lower

Fast, ablative vaporization is followed static breakdown voltage, aided by
, P field perturbations induced by the

o) gtomlzgtlgn, ionization, excitation of sample matrix surface
optical emission from elements. microstructure.
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Sliding Spark Plasma (2/2)

Dielectric bounds the plasma in one dimension, thus affecting the gas dynamic and
radiative properties of the surface in a manner that is distinct from the free spark,
the Lichtenberg patterns and the RF ‘gliding sparks’.

Due to the small cross section of sliding spark discharge a high electric field
potential drop is achieved in a narrow region along the surface of the solid with a
discharge brilliance far superior to the free spark operating at the same V and |.

High T, (17000 K in plasma core) leads to increased vaporization, high particle and
Ne, high current density, o,high resistance per unit length, and short optical pulse.

Matrix excitation accompanied by prompt spectral emission over a broad range
(soft X-ray — NIR): As plasma cools, broadband emission decays and are emitted
following relaxation of excited matrix species.

LTE is established only after several us for emission lines in the near UV/VIS range
once T, = 1,0000 K, and e densities =5 x 10 %> m™ are achieved.

ICTP-IAEA Workshop on Dense Magnetized Plasma and Plasma Diagnostics, 15-26 Nov., 2010. Angeyo H. K 4/14




Analytical Application (1/2)
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Systematic optimization of matrix and
spark plasma source parameters leads
to the sufficient and necessary (ablative,

opto-electric, temporal, geometric,
matrix) conditions for realization of
optically thin spark plasma suitable for
trace analysis of heavy elements
embedded in the base dielectric matrix.
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Analytical Application (2/2)
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stages of the plasma thermolization, and from electron-ion interaction and recombination.
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Selected Results (1/2)
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Elemental limits of detection vary
from several hundred ppb to few tens
of ppm depending on the element,
analyzed matrix, spectral line and
calibration strategy.

Technique comparable to ICP-AES
and EDXRF (polarized, 3-D) in terms
of reproducibility < 12 %, precision +
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Selected Results (2/2)

With a proper calibration strategy, based on multi-signal and multivariate spectral
approaches, rapid, direct, simultaneous trace quantitative spectroscopy of dielectric solids
is feasible utilizing the sliding spark in air at atmospheric pressure as an excitation source.
Analytical utility of the technique depends on the element of interest and matrix.

Use of suitable matrix modifiers results in increased sensitivity.

Internal standards Y and La (added) and Si and C (matrix-derived) lines compensate for
differing ablation yield, signal drifts and matrix effects in and between complex matrices.

Accurate analytical models derived for Mn, Ti, V, Ni, Co, Cu, Cd, Pb, Cr, Al, Fe, Zn, and
Hg. A quantification methodology developed based on sediment as model matrix.
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Method Merits

—

. Potential for quantitative and qualitative atomic and molecular spectroscopy.
Applicable for simultaneous, in situ analysis.

A direct solid analysis method applicable to non-conducting materials.

Use of optical fiber readily adapts it to remote analysis applications.

High flexibility in analytical line selection with possibilities of multivariate calibration
Sample preparation is almost absent or easy and does not need any liquid steps.
Combines vaporization and excitation is one single step

Flexibility in new spark sources design as the power source is simple

2.
3.
4.
S5.
6.
/.
8.
9.

Potential for speciation analysis, which has become a great challenge.
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Method Limitations

. Subject to extreme matrix effects at minor and major analyte concentrations

. Suffers from random shot-to-shot variation in the matrix ablation (sampling).

. High continuum radiation due to bremsstrahlung in emission: spectral overlaps.

. Essentially a surface-layer, as opposed to surface technique.

. Spectral broadening due to Doppler, collisional and Stark-effects, due to high density

. Most of the sensitive analytical lines are plagued by self-absorption and line reversal
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Analysis & Discussion (1/2)

Matrix homogeneity is crucial because the mass of sample that is atomized represents
only a minute part of the sample.

Because the dielectric matrix is the main source of ions in the plasma, complete
vaporization of embedded elements is a pre-requisite for quantitative analysis.

Good SNR may be achievable by gating passed the continuum radiation due to
recombination so as to detect only the more persistent analyte emission radiation.

The differences in decay time between ionic an atomic lines can provide a mechanistic
insight into, and suggest additional practical applications of, the sliding spark plasma.
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Analysis & Discussion (2/2)

Atomic vapour in the post-discharge regions has a lifetime of almost 300 s following the
execution of the excitation pulse, but ionised species reach peak intensity in a few ps.

This means, for quantitative trace spectroscopy it is imperative to find integration times
for which good SNR (i.e., use a typical delay time necessary to gate passed the bright
continuum radiation due to recombination so as to detect only the more persistent
emission radiation of the analyte species excited in the discharge plasma),

And that if the spark source frequency is set to greater than 3 kHz, atomic vapour
would continuously be present between the electrodes, and a fluorescence component
to the emission is possible.

Hence the sliding spark source at high repetition rates may be optimised to be a vapour
source for combined emission, fluorescence, and absorption spectroscopy. Operated under
‘soft’ discharge mode it would primarily excite few but most intense of the atom lines.
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Conclusion

A novel direct spectroanalytical method has been developed based on the sliding spark,
where matrix- excitation is driven by plasma particle interaction based on geometry- and
source opto-electric-, modulated e-impact excitation to analyse in the in the range (212 nm
<A <511 nm) using CCD detectors and a blazed holographic grating spectrometer.

The sliding spark is shown as a rich source of excited atoms and ions from the dielectric
base matrix, which may be exploited under suitable criteria (e.g., sliding spark-MS).

Sliding spark spectrometry was shown to also detects molecular, including radical species
spectra and lots of ‘cool’ neutral atom species and thus possesses the feasibility for the
elucidation of structural and molecular information if temporal gating techniques are used.

Proper opto-electric modulation, optimization of the sliding spark, and use of temporal
gating techniques enables the sliding spark as a plasma source of molecular, radical and
cold atom species for combined emission, fluorescence, and absorption spectroscopy and
for the surface structural elucidation applicable to imaging of dielectric surfaces.
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Future Developments

A more comprehensive optimisation of sliding spark spectrometry asks for detailed
knowledge on the fundamental processes of sample volatilisation and signal generation.

Applications for micro sliding spark can be envisaged for the study of the spatial
relationships of dielectric surfaces (zonation).

Better signal-background ratios may be achieved by optimising the instrument to observe
emission either away from or in the discharge axis. Neutral species occur primarily in the
cooler wings of the plasma and the ionic emission occurs primarily along the plasma axis.

Time—resolved sliding spark spectroscopy should give a clearer picture of the discharge
development with high temporal resolution.

The spark source should be optimised in the physical ablation so that the maximum
amount of sample is vaporised with minimum ejection of molten material.

A novel attempt at plasma enhancement would be to surround the plasma with a magnetic
fleld. Influence of magnetic fields on sliding sparks is however so far not studied.
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