From individuals to populations

Heterosigma cell. Photo: M. Black

Heterosigma Harmful Algal Bloom. Photo: K. Fredrickson

Daniel Grünbaum School of Oceanography University of Washington Seattle, WA U.S.A.

I.C.T.P. Advanced School on Complexity, Adaptation and Emergence in Marine Ecosystems

Outline

- 1. Motivations: Large-scale models vs. small-scale heterogeneity
- 2. Observations: Statistics of movement at the individual level
- 3. Derivations: Spatially-explicit models of populations
- 4. Approximations: Large-scale effects of unresolved heterogeneity

Outline

1. Motivations: Large-scale models vs. small-scale heterogeneity

- 2. Observations: Statistics of movement at the individual level
- 3. Derivations: Spatially-explicit models of populations
- 4. Approximations: Large-scale effects of unresolved heterogeneity

Societal applications of biogeochemical modeling

Response of diatoms distribution to global warming and potential implications: A global model study

L. Bopp,¹ O. Aumont,² P. Cadule,³ S. Alvain,¹ and M. Gehlen¹ GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L19606, doi:10.1029/2005GL023653, 2005

Figure 1. Satellite-derived and simulated distributions (a) and (b) of chlorophyll in mgChl m⁻³ and (c) and (d) of a diatoms index. The four panels represent climatological years, based on 1997–2003 SeaWiFs archive (Figures 1a and 1c) and on the first 10 years of our simulation (Figures 1b and 1d). The diatoms index represents the relative time in a year when diatoms are blooming, i.e., we divide the number of months when diatoms are blooming by the total number of months: PHYSAT directly diagnoses diatoms blooms [*Alvain et al.*, 2005] (Figure 1c) and diatoms blooms are diagnosed in the model when [*Chl*] > 0.5 mgChl m⁻³ and diatoms relative abundance >45% (Figure 1d).

Hamburg model of the Oceanic Carbon Cycle (HAMOCC5)

Aumount et al. (2003), Bopp et al. (2003, 2005)

Model schematic

Annual mean carbon flux (Gt C yr⁻¹)

HAMOCC5: Biogeochemical model mechanics

Aumount et al. (2003)

A bunch of equations establishing key transfer mechanisms ...

Sources/Sinks	
S(P)	$\mu^{P}L_{m}L_{P}P - m_{P}\frac{(P-P_{min})}{K_{P}+P}P - g_{Z}(P)Z - \gamma_{P}(P-P_{min})$
S(D)	$\mu^{D}L_{m}L_{D}D - m_{D}\frac{(D-D_{min})}{K_{D}+D}D - g_{M}(D)M - \gamma_{D}(D-D_{min})$
$S(D^{\star})$	$\left(\frac{Si}{C}\right)\mu^{D}L_{m}L_{D}D^{\star} - m_{D}\frac{D}{K_{D}+D}D^{\star} - g_{M}(D)\frac{D^{\star}}{D}M - \gamma_{D}\frac{D^{\star}}{D}(D - D_{min})$
S(Z)	$\epsilon_Z \sigma_Z g_Z(P) Z - m_Z \left(Z - Z_{min} \right) - \gamma_Z (Z - Z_{min}) - g_M(Z) M$
S(M)	$\epsilon_M \sigma_M \left(g_M(D) + g_M(Z) \right) M - m_M(M - M_{min}) - \gamma_M(M - M_{min})$
S(DOC)	$\gamma_P(P - P_{min})P + \gamma_D \left(D - D_{min}\right)D + \gamma_Z(Z - Z_{min}) + \gamma_M \left(M - M_{min}\right) - r_{doc}(N) DOC$
S(POC)	$F_1 - r_{poc}POC$
$R_{C:P}S(N)$	$-\mu^{P}L_{m}L_{P}P - \mu^{D}L_{m}L_{D}D + \sigma_{Z}(1 - \epsilon_{Z})g_{Z}(P)Z + m_{Z}(Z - Z_{min}) + \sigma_{M}(1 - \epsilon_{M})(g_{M}(D) + g_{Z}(Z))M + m_{M}\epsilon_{can}(M - M_{min}) + r_{doc}(N)DOC + r_{poc}POC$
S(Si)	$-\left(\frac{Si}{C}\right)\mu^D L_m L_D D^{\star} + r(Si)$
S(Fe)	$\left(\frac{Fe}{C}\right)^{P}\left(-\mu^{P}L_{m}L_{P}P+\gamma_{P}\left(P-P_{min}\right)+\gamma_{Z}(Z-Z_{min})+\gamma_{M}(M-M_{min})+m_{M}\left(1-\epsilon_{can}\right)(M-M_{min})+\sigma_{Z}(1-\epsilon_{Z})g_{Z}(P)Z$
	$+ \sigma_{M} (1 - \epsilon_{M}) g_{M}(Z) M + \left(\frac{Fe}{C}\right)^{D} (-\mu^{D} L_{m} L_{D} D + \sigma_{M} (1 - \epsilon_{M}) g_{M}(D) M + \gamma_{D} (D - D_{min}) D) + \left(\frac{Fe}{C}\right)^{P} - \left(\frac{Fe}{C}\right)^{D} \epsilon_{M} \sigma_{M} g_{M}(D) M$
	$+ r_{poc}PFe - \lambda_{scav} \max (0, (Fe - 0.6 nM))$
S(PFe)	$G(P, D, Z, M, z) - r_{poc}PFe$

Table 1. Source/Sink Budget Due to Biogeochemical Processes in the Top 100 m of the Ocean Model

HAMOCC5: Biogeochemical model mechanics Aumount et al. (2003)

... modulated by a bunch of regulatory functions ...

Process	Equation	Reference
	f(T)f(I) Phytoplankton	
Growth rate	$\mu = \frac{f(Ty(L))}{\sqrt{f(T)^2 + f(L)^2}}$	Jassby and Platt [1976]
Light limitation	$f(L) = I_0 \alpha \text{PAR}\frac{1}{z} \int_z e^{-kz} dz$	
Temperature dependence	$f(T) = ab^{cT}$	Eppley [1972]
Nutrient limitation for P	$L_P = \min\left(rac{N}{K_N^p + N}, rac{Fe}{K_{Fe}^p + Fe} ight)$	
Nutrient limitation for D	$L_D = \min\left(rac{N}{K_N^{b+N}}, rac{Fe}{K_{Fe}^{b}+Fe}, rac{Si}{K_S^{b}+Si} ight)$	
Chl/C in phytoplankton	$\frac{Chl^{\star}}{C} = \left(\frac{Chl}{C^{M}} - \left(\frac{Chl^{M}}{C} - \frac{Chl^{m}}{C}\right)\min\left(\frac{L}{I_{par}^{max}}, 1\right)\right)L_{P,D}$	Doney et al. [1996]
	Microzooplankton	
Grazed nanophytoplankton	$g_Z(P) = g_Z \frac{P}{K_Z + P}$	Fasham et al. [1990]
	Mesozooplankton	
Grazed diatoms	$g_M(D) = g_M \frac{p_D D}{K_M + p_D D + p_Z Z}$	Fasham et al. [1990]
Grazed microzooplankton	$g_M(Z) = g_M \frac{p_Z Z}{K_M + p_D D + p_Z Z}$	Fasham et al. [1990]
Preference for diatoms	$p_D = \frac{\pi_D D}{\pi_D D + \pi_Z Z}$	Fasham et al. [1990]
Preference for Z	$p_Z = \frac{\pi_Z Z}{\pi_D D + \pi_Z Z}$	Fasham et al. [1990]
	DOC	
Remineralization rate	$r_{doc}(N) = d_0 \frac{N}{N+k_d}$	Six and Maier-Reimer [1996]
Export	$F_1 = (TPP_1 + TPP_2) \frac{\partial}{\partial x} \left(\frac{z}{100} \right)^{-0.8}$	Suess [1980]
Phytoplankton POC	$TPP_{1} = \int_{0}^{100m} \left(m_{P} \frac{(P-P_{min})}{\kappa_{p+P}} P + m_{D} \frac{(D-D_{min})}{\kappa_{p+D}} D \right) dz$	
Zooplankton POC	$TPP_2 = \int_0^{100m} ((1 - \sigma_Z)g_Z(P)Z + (1 - \sigma_M)(g_M(D)))$	
	$+g_Z(Z))M + m_M(1 - \varepsilon_{can})(M - M_{min}))dz$	
	Silicate	
Export	$r(Si) = TSI \frac{\partial}{\partial z} \left(e^{-\frac{z}{6km}} \right)$	Maier-Reimer [1993]
Biogenic Si Production	$TSI = \int_0^{100m} \left(m_D \frac{D}{K_D + D} D^* + g_M(D) \frac{D^*}{D} M + \gamma_D \frac{D^*}{D} (D - D_{min}) \right) dz$	

Table 2.	Source/Sink	Terms for	Phytoplankton	and Zoo	plankton
			~ 1		1

HAMOCC5: Biogeochemical model mechanics Aumount et al. (2003)

... specified by a bunch of parameters.

Those of Diological Landinever (and b) and Derminions	Table 3.	Biological	Parameter	Values	and	Definitions
---	----------	------------	-----------	--------	-----	-------------

Symbol	Unit	Value	Definition
		Phytoplankton	n Size-Classes
a	day^{-1}	0.851	growth rate at 0°C
0		1.066	temperature sensitivity of growth
	$^{\circ}\mathrm{C}^{-1}$	1	temperature dependence of growth
ĸ	$day^{-1}m^2W^{-1}$	0.03	initial slope of P-I curve
	$m^{2}(W day)^{-1}$	0.025	light extinction coefficient
)	$W m^{-2}$		irradiance at the surface
AR		0.40	photosynthetically active radiation
N	μ mol P L ⁻¹	0.03/0.1	half-saturation constant for phosphate uptake
Fe	nmol Fe L^{-1}	0.02/0.12	half-saturation constant for iron uptake
-D Si	umol Si L^{-1}	0.8 - 8	half-saturation constant for silicate uptake
min. Dmin	μ mol C L ⁻¹	0.01	minimum phytoplankton concentration
$K_{\rm D}$	μ mol C L ⁻¹	0.05	half-saturation constant for phytoplankton mortality
$P^{2} = D$	dav^{-1}	0.05/0.03	exudation rate of DOC
lp	day^{-1}	0.008	specific mortality rate of nanophytoplankton
·	day^{-1}	0.01	minimum mortality rate of diatoms
min	day^{-1}	0.2	maximum mortality rate of diatoms
max 1	mg Chl (mg C) ⁻¹	1	maximum \raise 1pt\frac {(Ch]}\over{C}} ratio
r I	mg Chl (mg C) ⁻¹	$\frac{37}{1}$	minimum \frac {{Ch}}over{C}} ratio
nax	$W m^{-2}$	90 90	critical irradiance for photoadaptation
ar 1) ^{av}	$_{\rm umol}$ Si $({\rm umol}\ C)^{-1}$	0.13	average $\frac{Si}{S}$ for diatoms
		Zooplankton	Sizo Classes
		0.4	arazing efficiency
		0.15/0.25	erection as faecal pellets
	dax^{-1}	14/2	egestion as factal periods
V	uay	14/3	half acturation constant for grazing
Z, Λ_M	µmor C L	10	man-saturation constant for grazing
$D, \pi Z$	J1	0.5, 0.5	mesozoopiankton reeding preferences
	day	0.01/0.05	specific mortanty rate
	day	0.25/0.05	excretion rate of DOC
an N		0.7	POC loss from higher trophic levels
min, M _{min}	µmol C L	0.01	minimum zooplankton concentration
	1 -1	Organic	Matter
DOC	day ⁻¹	0.01	DOC remineralization rate
1	μ mol P L ⁻¹	0.3	half-saturation constant for DOC remineralization
<i>70C</i>	yr ⁻¹	0.24	detrital breakdown rate
C:P		122:1	Redfield ratio of carbon to phosphate
D		Irc	on
P		4×10^{-6}	ratio of iron to carbon in zooplankton and nanophytoplanktor
min		$3 imes 10^{-6}$	minimum ratio of iron to carbon in diatoms
*		$17 imes 10^{-6}$	slope of the ratio of iron to carbon for diatoms
0	vr^{-1}	0.005	minimum scavenging rate of iron
*	vr^{-1} (umol C L) ⁻¹	5×10^3	slope for the scavenging rate of iron

^aWhen two values are given (separated by a/), the first value refers to the smallest size-class (nanophytoplankton or microzooplankton) and the second value refers to the largest size-class (diatoms or mesozooplankton).

HAMOCC5: Biogeochemical model mechanics

Aumount et al. (2003)

Sources/Sinks	
S(P)	$\mu^{P}L_{m}L_{P}P - m_{P}\frac{(P-P_{min})}{K_{P}+P}P - g_{Z}(P)Z - \gamma_{P}(P-P_{min})$
S(D)	$\mu^{D}L_{m}L_{D}D - m_{D}\frac{(D-D_{min})}{K_{D}+D}D - g_{M}(D)M - \gamma_{D}(D - D_{min})$
$S(D^{\star})$	$\left(\frac{Si}{C}\right)\mu^{D}L_{m}L_{D}D^{\star} - m_{D}\frac{D}{K_{D}+D}D^{\star} - g_{M}(D)\frac{D^{\star}}{D}M - \gamma_{D}\frac{D^{\star}}{D}(D - D_{min})$
S(Z)	$\epsilon_Z \sigma_Z g_Z(P) Z - m_Z \left(Z - Z_{min} \right) - \gamma_Z (Z - Z_{min}) - g_M(Z) M$
S(M)	$\epsilon_M \sigma_M \left(g_M(D) + g_M(Z) \right) M - m_M(M - M_{min}) - \gamma_M(M - M_{min})$
S(DOC)	$\gamma_P(P-P_{min})P+\gamma_D\left(D-D_{min}\right)D+\gamma_Z(Z-Z_{min})+\gamma_M\left(M-M_{min}\right)-r_{doc}(N)\ DOC$
S(POC)	$F_1 - r_{poc}POC$
$R_{C:P}S(N)$	$-\mu^{P}L_{m}L_{P}P - \mu^{D}L_{m}L_{D}D + \sigma_{Z}(1 - \epsilon_{Z})g_{Z}(P)Z + m_{Z}(Z - Z_{min}) + \sigma_{M}(1 - \epsilon_{M})(g_{M}(D) + g_{Z}(Z))M + m_{M}\epsilon_{can}(M - M_{min}) + r_{doc}(N)DOC + r_{poc}POC$
S(Si)	$-\left(\frac{Si}{C}\right)\mu^D L_m L_D D^\star + r(Si)$
S(Fe)	$\left(\frac{Fe}{C}\right)^{P}\left(-\mu^{P}L_{m}L_{P}P+\gamma_{P}\left(P-P_{min}\right)+\gamma_{Z}(Z-Z_{min})+\gamma_{M}(M-M_{min})+m_{M}\left(1-\epsilon_{can}\right)(M-M_{min})+\sigma_{Z}(1-\epsilon_{Z})g_{Z}(P)Z$
	$+ \sigma_{M} \left(1 - \epsilon_{M}\right) g_{M}(Z) M + \left(\frac{Fe}{C}\right)^{D} \left(-\mu^{D} L_{m} L_{D} D + \sigma_{M}(1 - \epsilon_{M}) g_{M}(D) M + \gamma_{D} \left(D - D_{min}\right) D\right) + \left(\frac{Fe}{C}\right)^{P} - \left(\frac{Fe}{C}\right)^{D} \epsilon_{M} \sigma_{M} g_{M}(D) M$
	$+ r_{poc}PFe - \lambda_{scav}\max(0, (Fe - 0.6 nM))$
S(PFe)	$G(P, D, Z, M, z) - r_{poc}PFe$

Table 1. Source/Sink Budget Due to Biogeochemical Processes in the Top 100 m of the Ocean Model

HAMOCC5: Dynamics of "small phytoplankton", P

HAMOCC5: Biogeochemical model mechanics Aumount et al. (2003)

HAMOCC5: Biogeochemical model mechanics Aumount et al. (2003)

... specified by a bunch of parameters.

Table 3. Biological Parameter Values and De
--

Symbol	Unit	Value	Definition	
		Phytoplanktor	n Size-Classes	
a	day^{-1}	0.851	growth rate at 0°C	
b	0 1	1.066	temperature sensitivity of growth	
с	C^{-1}	1	temperature dependence of growth	
α L	$day m^2 W day^{-1}$	0.03	initial slope of P-I curve	
K	$m^{-}(w \text{ day})^{-1}$	0.025	light extinction coefficient	
	w III	0.40	nhotosynthetically active radiation	
K	μ mol P L ⁻¹	0.40	half-saturation constant for phosphate untake	
K_N K_{E_2}	μ mol Fe L ⁻¹	0.02/0.12	half-saturation constant for iron untake	a = 11 day 1
K_{Si}^{D}	μ mol Si L ⁻¹	0.8-8	half-saturation constant for silicate uptake	$g = 14 \text{ day}^{-1}$
P _{min} , D _{min}	μ mol C L ⁻¹	0.01	minimum phytoplankton concentration	
$K_{P} K_{D}$	μ mol C L ⁻¹	0.05	half-saturation constant for phytoplankton mortality	$K_{2} = 18 \mu \text{mol C L}^{-1}$
γ	day ⁻¹	0.05/0.03	exudation rate of DOC	
m_P	day^{-1}	0.008	specific mortality rate of nanophytoplankton	
m_{min}	day^{-1}	0.01	minimum mortality rate of diatoms	
m_{max}	day ⁻¹	0.2	maximum mortality rate of diatoms	
$\frac{Chl}{C^M}$	mg Chl (mg C) ^{-1}	$\frac{1}{3,7}$	maximum \raise 1pt\frac{ $C}} ratio$	
Chl C ^M	mg Chl (mg C) ⁻¹	$\frac{1}{90}$	minimum \frac {{Chl}\over {C}} ratio	
I max par	$W m^{-2}$	90	critical irradiance for photoadaptation	
$\left(\frac{SI}{C}\right)^{(1)}$	μ mol Si (μ mol C) -	0.13	average $\frac{G}{C}$ for diatoms	
		Zooplankton	Size-Classes	
ϵ		0.4	grazing efficiency	
σ		0.15/0.25	egestion as faecal pellets	
g	day ⁻¹	14/3	maximum grazing rate	
K_Z, K_M	μ mol C L ⁻¹	18	half-saturation constant for grazing	
π_D, π_Z	1 -1	0.5, 0.5	mesozooplankton feeding preferences	
m	day ¹	0.01/0.05	specific mortality rate	
γ	day	0.25/0.05	excretion rate of DOC	
ϵ_{can} 7 M	$umol \subset I^{-1}$	0.7	POC loss from higher trophic levels	
L _{min} , W _{min}	pinor C L	0.01	minimum zooprankton concentration	
		Organic	Matter	
λ_{DOC}	day^{-1}	0.01	DOC remineralization rate	
k_d	μ mol P L ⁻¹	0.3	half-saturation constant for DOC remineralization	
rpoc	yr ⁻¹	0.24	detrital breakdown rate	
$R_{C:P}$		122:1	Redfield ratio of carbon to phosphate	
		Ire	on	
$\frac{Fe^P}{C}$		$4 imes 10^{-6}$	ratio of iron to carbon in zooplankton and nanophytoplankton	
<u>ře</u> min C		3×10^{-6}	minimum ratio of iron to carbon in diatoms	
$\frac{\underline{F}e^{\star}}{C}$		$17 imes 10^{-6}$	slope of the ratio of iron to carbon for diatoms	
λ_{scav}^0	yr^{-1}	0.005	minimum scavenging rate of iron	
λ_{scav}^{\star}	$yr^{-1} (\mu mol \ C \ L)^{-1}$	5×10^3	slope for the scavenging rate of iron	

^aWhen two values are given (separated by a /), the first value refers to the smallest size-class (nanophytoplankton or microzooplankton) and the second value refers to the largest size-class (diatoms or mesozooplankton).

Trophic Interaction Rates (Functional Responses)

Assumptions:

1) The amount of food found and eaten is proportional to time spent searching (T_{search})

2) It takes time to chew, swallow and digest food (a.k.a. food handling time, $T_{handling}$)

3) Foragers must spend part of the time searching and part of the time handling food

Question:

How much food does an animal obtain e.g., when food is abundant (T_{search} is short) or when food is scarce (T_{search} is long)?

Functional Response: Concentration and Consumption

e.g. Hansen et al. 1997

Consumption of resources is a non-linear function of resource concentration.

$$I(r) = \frac{c_0 r}{c_1 + r}$$

Hamburg model of the Oceanic Carbon Cycle (HAMOCC5)

What's needed to increase resolution...?

Marine ecosystems are highly diverse.

Marine environments are spatially and temporally heterogeneous across a wide spectrum of scales.

Aperiodic nutrient supply in the North Pacific Subtropical Gyre

"Broad-scale descriptions of general ocean circulation and major biogeochemical cycles ... ignore many potentially important but more stochastic events that may affect the local resupply of nutrients to the surface ocean." Karl (1999)

Nutrient supply mechanisms:

internal waves & tides, mesoscale eddies, Ekman pumping, atmospheric storms

Coccolithophorid (*Emiliania huxleyi*) bloom in the Bering Sea

Spatial variability in krill biomass in the Southern Ocean

Antarctic krill (*Euphausia superba*) near Elephant Island Video taken at *ca*. 2 meters depth by R. R. Veit

SIGMA THETA PARTICULATE ABSORPTION TEMPERATURE SALINITY

Rines et al. (2002) Mar. Ecol. Prog. Ser. 225:123-137

Fine-scale variability in cell abundance Waters (2003)

[eukaryotic cell abundance (x 10³ cells ml⁻¹)]

2-dimensional syringe sampler array data: consumers and resources vary by >10x over a few cms.

Functional Response: Concentration and Consumption

Consumption of resources is a non-linear function of mean resource density.

"Mean field" resource perspective

Consumption of resources is a function of time spent in patches.

"Patchy" resource perspective

Fractal Landscapes Haskell et al. 2002

"Heterogeneity is largely missing from models of consumerresource and other species interactions in ecology" Ritchie 2010

"The resource distribution was generated using random "Sierpinski gaskets"25. Note that the species with the larger sampling volume encounters a lower average density of resources per sampling volume but requires fewer sampling volumes to incorporate all resources."

Foraging with sensory constraints

Biased Random Walks Mediated by Internal States

