Outline

1. Motivations: Large-scale models vs. small-scale heterogeneity

2. Observations: Statistics of movement at the individual level

- 3. Derivations: Spatially-explicit models of populations
- 4. Approximations: Large-scale effects of unresolved heterogeneity

Quantifying organism movement: gps data logger Charlotte Boyd

Peruvian Boobies (Sula variegata)

Photo: S. Bertrand, IRD

Quantifying organism movement: gps data logger Charlotte Boyd

Hidden Markov Model / Maximum Likelihood Estimation

Quantifying organism movement: gps data logger Charlotte Boyd

Central-place foraging near breeding colonies: slow/sinuous modes indicative of fine-scale search or foraging in magenta

Quantifying organism movement: satellite tracking Elizabeth Skewgar

Behavior of Magellanic Penguins at Sea

Quantifying organism movement: satellite tracking Elizabeth Skewgar

Hidden Markov Model / Maximum Likelihood Estimation constrained by prior data

Quantifying organism movement: satellite tracking Elizabeth Skewgar

Herring school dynamics from acoustic tracking

Handegard et al. 2005

Makris et al. 2009

Quantifying organism movement: video tracking

Video tracking for quantifying distributions and movements of plankton Swimming trajectories, *Strombidinopsis* sp., Susanne Menden-Deuer

Menden-Deuer & Grünbaum 2006

Low cost, field-deployable in situ sampler

3D Footage of Natural Communities

Laboea strobila

Heterosigma akashiwo Harmful Algal Blooms

Heterosigma cell. Photo: M. Black

Heterosigma Harmful Algal Bloom. Photo: K. Fredrickson

Lower cost, field-deployable in situ sampler

Generalized Lifecycle of Heterosigma

Vegetative Heterosigma cell swimming

Strain = CCMP452, NY,USA

M. T. Nishizaki

Estimating 3D helical trajectories from 2D data Gurarie et al. 2010

Z (mm)

Helical characteristics are diagnostic of strain (putative genotype) Gurarie et al. 2010

Parameters		
μ_a		mean vertical velocity of V^a
$ au_a$		characteristic time scale of V^a
σ_a		magnitude of stochasticity for V^a
ω_o		characteristic angular velocity of \mathbf{V}^o
Po	$1/\omega_o$	characteristic period of rotation of \mathbf{V}^{o}
$ au_o$		characteristic time scale of \mathbf{V}^{o}
σ_o		magnitude of stochasticity for \mathbf{V}^{o}
\bar{V}_t		mean tangential velocity
Θ	$\sin^{-1}(\mu_a/\overline{V}_t)$	mean tangential angle

A) Strains					
Location	Narraganset Bay, RI	Long Island Sound, NY	Puget Sound, WA	Puget Sound, WA	Onagawa Bay, Sea of Japan
Year	1991	1952	2002	2007	1984
Ν	55	131	31	54	33
B) Parameters					
$\mu_a \text{ (mm s}^{-1}\text{)}$ $\overline{V}_t \text{ (mm s}^{-1}\text{)}$	0.069 (0.022-0.175) 0.141 (0.085-0.383)	0.036 (0.005-0.129) 0.114 (0.05-0.155)	0.047 (0.007-0.088) 0.055 (0.022-0.103)	0.049 (0.021-0.118) 0.097 (0.053-0.12)	0.043 (0.013-0.094) 0.101 (0.061-0.153)

Swimming Statistics of Individual Transitional Cells Elizabeth Tobin

Mean Vertical and Horizontal Velocity

Helical characteristics are characteristic of cell state Elizabeth Tobin

Establishing Motion-based Criteria to Classify Cell State Elizabeth Tobin

Identifying Net Movement for Each Cell State

	Induced motile	Transitional	Resting	Vegetative motile	Settling velocity
Mean Oscillatory Speed (µm s-1)	13.90 ± 6.1	6.79 ± 2.1	3.77 ± 0.9		
Mean Gross Speed (µm s-1)	9.30 ± 4.8	5.87 ± 2.0	4.83 ± 1.7	49 - 66	
Mean Vertical Velocity (µm s-1)	- 4.25 ± 3.5	- 4.16 ± 2.2	- 4.47 ± 1.8	35 - 60	≈ 4 µm s [.] 1
Mean Horizontal Velocity (µm s-1)	5.45 ± 4.1	2.46 ± 1.7	0.80 ± 0.6	(Bearon et al. 2004)	(Stokes' flow)
Ν	5712	5161	8434		

Stokes flow (Low Renoylds number)

$$\begin{split} \rho_{p} &= 1.105 \text{ g cm}^{-3} \text{ (Wada et al. 1985)} \\ \rho_{f} &= 1.025 \text{ g cm}^{-3} \text{ (28 psu)} \\ R &= 5 \ \mu\text{m} \\ \mu &= 1.376 \text{ x } 10^{-3} \text{ (28 psu, } 10^{\circ\text{c}} \text{)} \end{split}$$

$$V_s = \frac{2}{9} \frac{(\rho_p - \rho_f)}{\mu} g R^2$$

+ Heterosigma cells under going life-stage transition have net downward movement comparable to passive sinking.

Echinoderm larva (*Dendraster excentricus* – sand dollar) Karen Chan

Confocal-based low-Re model of swimming biomechanics

Chan and Grunbaum, in prep.

Confocal-based low-Re model of swimming biomechanics

Chan and Grunbaum, in prep.

Thin layer formation by natural plankton communities - 2-halocline experiment

Experimental design:

- 1. Plankton pump water from 1 m and 4 m (Friday Harbor Laboratories dock)
- 2. Dilute with R.O. water to create two 1 psu haloclines
- 3. Sequential vertical profiles with video tracker

Thin layer formation by natural plankton communities - 2-halocline experiment

15 vertical stations, 6 profiles, 90 video clips, > 1.8 10⁶ particle localizations

Thin layer formation by natural plankton communities - 2-halocline experiment

Total organism/particle counts

Abundance and vertical flux for motile and passive particles

Upward fluxes (# mm/s)

Heterotrophic protists aggregate to thin layer of phytoplankton prey cells Susanne Menden-Deuer

Mechanisms of aggregation: behavioral responses to food

Direction

Turning rate [deg. s-1]

Population redistribution in prey gradients

Frequency of high <u>turning rates</u> increases with ambient prey concentration

Distributions of <u>turning rates</u> do not differ depending on gradient direction

