Outline

- 1. Motivations: Large-scale models vs. small-scale heterogeneity
- 2. Observations: Statistics of movement at the individual level
- 3. Derivations: Spatially-explicit models of populations
- 4. Approximations: Large-scale effects of unresolved heterogeneity

Interactions between consumers and heterogeneous resources

Key mechanisms: resource patch dynamics, movement, reproduction, consumption

Key parameters:

Organism-level		Landscape-level	
parameter	interpretation	parameter	interpretation
С	consumer speed	Т	resource time scale
τ	consumer turning interval	L	resource length scale
σ_z	max. intrinsic rate of growth of consumer	r	char. resource density
η	max. specific consumption rate of consumer	z	char. consumer density
μ	mortality rate of consumer		

Interactions between consumers and heterogeneous resources

Key mechanisms: resource patch dynamics, movement, reproduction, consumption

Key timescales:

Resource patch duration timescaleTConsumer motility timescale $T_{search} = \frac{L^2}{c^2 \tau}$ Consumer reproduction timescale $T_{reprod} = \frac{1}{\sigma_z}$ Resource consumption timescale $T_{consumpt} = \frac{\bar{r}}{\eta \bar{z}}$

Interactions between consumers and heterogeneous resources

Putative ecological indices:

Definition	Name	interpretation
$\mathscr{F}r = \frac{T}{T_{search}} = \frac{c^2 T \tau}{L^2}$	Frost number	Relative importance movement in <i>z</i>
$\mathscr{S}tr = \frac{T}{T_{reprod}} = T\sigma_z$	Strathmann number	Relative importance reproduction in <i>z</i>
$\mathcal{L}e = \frac{T}{T_{consumpt}} = \frac{\eta \bar{z}T}{\bar{r}}$	Lessard number	Relative importance of consumption of r by z

Interpreting marine ecological dynamics with non-dimensional indices

An ecological modeling framework

r(t,x) = resource density, z(t,x) = consumer density

Demography-dominated Str >> 1, Fr << 1, Le << 1 Motility-dominated Str << 1, Fr >> 1, Le << 1

Interpreting ecological dynamics with non-dimensional indices Grünbaum 2002

Frost Number:

$$Fr = \frac{C^2 T \tau}{L^2}$$

Characteristic values: c ~ forager speed τ ~ forager turning interval L ~ resource length scale T ~ resource time scale

Aggregation of consumers to resources – time series

Aggregation of consumers to resources – time average

Characterizing Ecological Dynamics in the Marine Environment

Frost Number:

$$Fr = \frac{C^2 T \tau}{L^2}$$

Characteristic values:

- c ~ forager speed
- $\tau \sim$ forager turning interval
- *L* ~ resource length scale
- $T \sim \text{resource time scale}$

$$T_{critical} = \frac{L^2}{C^2 \tau}$$

Distinguishing available from unavailable resources

An ecological modeling framework

$$\frac{\partial r}{\partial t} = \underbrace{\nabla \left(D_e \nabla r - \mathbf{U} r \right)}_{\text{Phys. diffusion, advection of } r} + \underbrace{Q(t, \mathbf{x}, r)}_{\text{Production of } r} - \underbrace{\mathcal{L}e \ \hat{H}(t, \mathbf{x}, r, z)z}_{\text{Consumption of } r}$$

$$\frac{\partial z}{\partial t} = \underbrace{\mathcal{F}r \ \nabla \left(\hat{D}(r) \nabla z - \hat{\chi}(r) \nabla rz \right)}_{\text{Behav.+Phys. diffusion, migration of } z} - \underbrace{\nabla \left(\mathbf{U}z \right)}_{\text{Advection of } z} + \underbrace{\mathcal{S}tr \ \hat{S}(t, \mathbf{x}, r, z)z}_{\text{Demographics of } z}$$

Non-dimensional indices and their interpretations

Definition	Name	interpretation	
$\mathcal{F}r = \frac{c^2 T \tau}{L^2}$	Frost number	patch duration search time	
$\mathcal{S}tr = T\sigma$	Strathmann number	patch duration consumer generation time	
$\mathcal{L}e = \frac{\eta \bar{z}T}{\bar{r}}$	Lessard number	<u>patch</u> duration consumption time	

Spatially and temporally averaged resource and consumer populations

Lessard No. Le << 1 (weak impacts of consumers on resources)

0

Spatially and temporally averaged resource and consumer populations

Lessard No. Le >> 1 (strong impacts of consumers on resources)

0

How valuable is a patchy resource?

Normalized, time-averaged total resource & consumer abundance

resource distributions relative to uniform distributions of the same resources.