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Outline

- trait-based competition
- neutral theory in space
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Competition, diversity, exclusion

from: Smithsonian Environmental Research Lab

Plankton Paradox (Hutchinson Am. Nat. 1961)

classical result:

many ways out: shared predators, time dependence, space, flows, food webs, neutrality

this lecture: what if resources are continuous?
(food of different size)

Ncompetitors ≤ Nresources

lunedì 25 ottobre 2010



S. Pigolotti  ICTP, 24/10/2010

Basic model: 2 species
competitive Lotka-Volterra system:

d

dt
n1 = n1(r1 − a11n1 − a12n2)

d

dt
n2 = n2(r2 − a21n1 − a22n2)

118 3. Chemical and Ecological Models
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Figure 3.7: Phase portraits for system (3.79). In all panels a11 =
a22 = 1, r1 = 1 and r2 = 0.8. The black square indicates the stable
fixed points. Dashed lines are the nullclines of the two equations (the
coordinate axes are also nullclines). A number of trajectories is plotted,
with the arrows indicating the direction of motion. a) a12 = a21 = 0.5
(interspecies competition smaller than the intraspecific one) so that
(3.80) is satisfied and species coexistence is the asymptotic stable state.
b) a12 = a21 = 2 (interspecies competition larger than the intraspecific
one), so that (3.81) is satisfied. The interior fixed point is unstable and
there is bistability: depending on the initial condition either extinction
of B1 or of B2 occurs. c) (a12 = 1.1, a21 = 0.7) and d) (a12 = 0.7, a21 =
1.1) do not satisfy (3.80)-(3.81), and the nullclines do not intersect in
the interior of the positive quadrant. Then the only fixed points are
on the axes, and only one is stable, representing extinction of one of
the two species.

unique coexistence fixed point, stable if: 

a12/a22 < r1/r2 < a11/a21

n1

n2

intraspecific > interspecific
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Basic model: many species

- also in this case: unique fixed point

- stable if eigenvalues of matrix are positive

- too many parameters: N x (N+1)

- how does competition depend on traits?

d

dt
ni = ni



ri −
�

j

aijnj



 i, j = 1 . . . N
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Niche model
d

dt
ni = ni



r(xi)−
�

j

a(|xi − xj |)nj



 i, j = 1 . . . N

- species are characterized by trait x 
(body mass, beak size etc)

- growth depend on trait

- competition intensity decays with 
increasing trait difference

http://ifisc.uib-csic.es

Motivation

Limiting similarity scenario No limiting similarity

LV dynamics with constant carrying capacity supports both scenarios
depending on the interactions G. 
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Niche model - protocols
d

dt
ni = ni



r(xi)−
�

j

a(|xi − xj |)nj



 i, j = 1 . . . N

- fixed number of species (regular/irregular 
spacing)

- assembly (random rare invasion)

- mutation (diffusion in niche axis)

- extinction threshold

http://ifisc.uib-csic.es

Motivation

Limiting similarity scenario No limiting similarity

LV dynamics with constant carrying capacity supports both scenarios
depending on the interactions G. 

Multiple solution -> the answer depends on the question
(invasibility vs stability of the “diverse” state)
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Wait a minute: where are the resources?

http://ifisc.uib-csic.es

Motivation

Resources arranged in a continuum: the niche space (size of prey, its location, …) 
Species distribute according to their phenotype on such space. Continuous or discrete
distributions are in principle allowed

u

Principle of competitive exclusion Existence of a Limiting similarity

Stronger competition G(u,v) among species specialized in resources close 
in niche space   G G (|u-v|)

(Hutchinson, 1959; MacArthur & Levin, 1967)

x

- to each trait value x correspond a distribution 
of preferred resources -> utilization function

- competition intensity is proportional to the 
overlap of the utilization functions

- two different interpretations: distribution of 
traits or distribution of preferences

- popular assumption: everything is Gaussian

Self-organized similarity, the evolutionary emergence
of groups of similar species
Marten Scheffer* and Egbert H. van Nes

Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 8080,
6700 DD, Wageningen, The Netherlands

Edited by Stephen R. Carpenter, University of Wisconsin, Madison, WI, and approved February 21, 2006 (received for review September 16, 2005)

Ecologists have long been puzzled by the fact that there are so
many similar species in nature. Here we show that self-organized
clusters of look-a-likes may emerge spontaneously from coevolu-
tion of competitors. The explanation is that there are two alter-
native ways to survive together: being sufficiently different or
being sufficiently similar. Using a model based on classical com-
petition theory, we demonstrate a tendency for evolutionary
emergence of regularly spaced lumps of similar species along a
niche axis. Indeed, such lumpy patterns are commonly observed in
size distributions of organisms ranging from algae, zooplankton,
and beetles to birds and mammals, and could not be well explained
by earlier theory. Our results suggest that these patterns may
represent self-constructed niches emerging from competitive in-
teractions. A corollary of our findings is that, whereas in species-
poor communities sympatric speciation and invasion of open
niches is possible, species-saturated communities may be charac-
terized by convergent evolution and invasion by look-a-likes.

biodiversity ! coexistence ! competition ! evolution ! niche construction

One of the classical puzzles in biology is the question how so
many species can coexist in nature (1). Niche differentiation

is obviously an important aspect. However, it is clear that other
mechanisms must be involved, as similarity in coexisting species is
often striking. For instance, in planktonic communities, impressive
numbers of species coexist in a seemingly homogeneous habitat
with little scope for niche differentiation (2), and in tropical
rainforests numerous similar tree species coexist (3). An explana-
tion that is close to the intuition of many naturalists is that the niches
of all of these seemingly similar species really differ in aspects that
are not easily detected. Another, slightly less intuitive class of
explanations for the coexistence of so many species in nature is that
various mechanisms may help to prevent competitive exclusion.
Examples are predation (4, 5), chaotic population dynamics (6, 7),
environmental variability (2, 8, 9), and incidental disturbances (10,
11). The interaction of such mechanisms at multiple scales of space
and time may maintain much of the biodiversity observed in nature
(12, 13). A rather different aspect is stressed in the neutral theory
of biodiversity (3, 14) that sparked some controversy over the past
years (15). The essential assumption is that species are equivalent,
so that no species can out-compete another. Although it may be
argued that species sharing an ecological niche and facing the same
fundamental tradeoffs will coevolve to have roughly the same
competitive power (16), real neutrality is of course a limit case (17),
and the results have been shown to be quite fragile to relaxation of
the assumption (18, 19). Nonetheless, one may ask whether strong
similarity might in some way still help to facilitate coexistence.

To explore how we might bring the seemingly disparate worlds of
niche and neutral theory together, we use a classical Lotka–
Volterra competition model

dNi

dt ! rNi"Ki " #
j

#i, jNj$%Ki i ! 1,2, . . . n; #i, j ! 1,

[1]

where Ni is the density of the species i, r is the maximum per capita
growth rate, Ki is the carrying capacity of species i, and #i,j is the
competition coefficient scaling the effect of species j on species i.
We chose the competition coefficients in such a way (see Methods)
that the model mimics competition between species along a niche
gradient (Fig. 1).

Pattern Formation in Communities of Competing Species
As a first approach to analyze how competition along a niche axis
would structure a community, we place a large number of species
at random positions on an infinite niche axis (mimicked by making
it circular, see Methods) and compute the resulting competition
coefficients. We then run the competition model to see to which
state it converges. Although one would intuitively expect that the
survivors of this competition game would be species that are equally
spread out over the niche axis, the surprising result is that simula-
tions converge to a very long transient pattern of self-organized
lumps that contain multiple coexisting species of similar size (Fig.
2a). Numerical experiments (not shown) revealed that the distance
between species lumps on the niche axis depends on the niche width
of the species in the sense that the lumps are spread further apart
if the standard deviations of the species size distributions (the
niches) are broader. Thus, coexistence of different lumps is a
straightforward effect of avoidance of competition. However, spe-
cies that are similar enough apparently escape this rule of limiting
similarity and may coexist within the lumps.

Although this pattern of lumpy coexistence is transient, it can
exist for thousands of generations (defined as 1&r). Eventually one
species in each hump survives, giving rise to the intuitively expected
pattern of equally spaced single species. However, it has been

Conflict of interest statement: No conflicts declared.

This paper was submitted directly (Track II) to the PNAS office.

See Commentary on page 6083.

*To whom correspondence should be addressed. E-mail: marten.scheffer@wur.nl.

© 2006 by The National Academy of Sciences of the USA

Fig. 1. To study competition, we place species randomly along a hypothet-
ical niche axis. To facilitate an intuitive interpretation, one may think of the
niche axis as a gradient that is related to the size of organisms. If we assume
that individuals of the same size compete strongest, niche overlap and result-
ing competition coefficients can be computed (45) for sets of species of given
size distributions (see Methods).

6230–6235 ! PNAS ! April 18, 2006 ! vol. 103 ! no. 16 www.pnas.org&cgi&doi&10.1073&pnas.0508024103

lunedì 25 ottobre 2010



S. Pigolotti  ICTP, 24/10/2010

Limiting similarity

http://ifisc.uib-csic.es

Motivation

Limiting similarity scenario No limiting similarity

LV dynamics with constant carrying capacity supports both scenarios
depending on the interactions G. 

- in this model, competition does not set 
a limit to similarity

- threshold and/or diversity will result 
in limiting similarity

Invasibility vs Coexistence

d

dt
ni = ni



r −
�

j

a(|xi − xj |)nj



 i, j = 1 . . . N
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tions. The position and height of its maximum identify
periodic structures. In Fig. 2, we plot (left panel) the
maximum height of S as a function of the exponent ! of
the kernel. The sharp increase of maxS for !> 2 indicates
the formation of periodic structures. This is confirmed by
the right panel plot, where we show the position km of the
peak of S, together with the value kL at which the linear
growth [expression (3)] has a maximum. Note that the
location of this maximum is independent of the parameters
a and s, being dependent only on the parameters in g!!x"
(R and !; the dependence on R disappears when consid-
ering kLR). The striking agreement between km and kL for
!> 2 confirms that the linear pattern-forming instability
of the homogeneous distribution is the mechanism respon-
sible for the periodic species arrangement observed in that
range. Except when ! # 2, the value of kLR is in the range
4.0–5.0, so that the pattern periodicity would be d #
2"=kL # #R, with # # 1:3–1:6, as observed in Fig. 1
(right panels).

Another difference between ! $ 2 and !> 2, visible in
Fig. 1, is the existence in the latter case of exclusion zones
around established species, in which immigrants have not
been able to settle. We can understand the presence of these
regions also from the density equation (2), for s % 0, by
noticing that its steady stable solutions $st!x" necessarily
have regions with $st!x" % 0 in the pattern-forming case.
This can be seen from the steady state conditionR
dyg!jx& yj"$st!y" % 1=a, which is valid for all x in

which $st!x" ! 0. If, in fact, these locations cover the
full niche space '0; 1(, we can solve the steady state con-
dition by Fourier transform and find that the only solution
[for nonconstant g!x"] is the homogeneous one $st!x" %

!aN "&1. Since this is linearly unstable when the Fourier
transform of g!x" is not positive definite, we conclude that
steady stable solutions of (2) in the pattern-forming case
must have exclusion zones, i.e., regions of zero density.
Given the absorbing character of the $ % 0 state, many
steady solutions exist, differing in the amount and location
of the $st % 0 segments, but the most relevant are the ones
attained when s ! 0). Figure 1 (bottom right) shows one
of these solutions, numerically obtained [for a kernel
g4!x" ) %!x"]. The steady solution corresponding to the
g4!x" kernel of the top right panel is zero everywhere
except at a set of periodically spaced delta functions. In
both cases, the discrete species distribution is well repre-
sented by the solutions of (2).

When ~g!k" remains positive, as for g!!x" with ! $ 2,
&!k" remains negative, and there are no patterns nor exclu-
sion zones surviving in steady solutions of the density
equation for s ! 0). Thus, the characteristic distance
between species observed in Figs. 1 and 2 should be
determined by a qualitatively different mechanism from
the case !> 2. We explore it for the exponential kernel
g1!x" % exp!&x=R", because it allows an analytical esti-
mate. Figure 3 shows the number of species at equilibrium
for ai % a and also in the heterogeneous situation in which
the ai’s are independent random variables uniformly dis-
tributed between 0:95 !a and 1:05 !a, !a being an average
value.

In the nonheterogeneous case, we observe that, when the
species evolve far from the extinction threshold, a new
species can always settle between two existing ones, thus
reducing their populations. This brings the ni’s closer to nT
as the number of species increases, and eventually no new
species will be admitted. Thus, for !< 2, the mechanism
fixing a maximum number of species and the characteristic
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FIG. 2. Left panel: Maximum of hS!k"i, the structure function
averaged over 1000 realizations of stationary distributions of
species (obtained after a time t % 105, without immigration
during the last half of it) as a function of !, for R % 0:1, ai %
a % 0:1. Right panel: Position of the peak km vs ! (circles),
together with the linearly fastest growing mode kL (line), from
(3). For !> 2, the difference between km and kL is always
smaller than the finite-size discretization of the values of km. We
show configurations for ! % 1:8 and ! % 2:2, close to the
critical value ! % 2.
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FIG. 3. Number of species as a function of competition coef-
ficient a (left panel, R % 0:1) and the interaction distance R
(right panel, a % 0:1). Symbols joined by dashed and solid lines
are for the cases of a0is heterogeneity (for which !a is plotted
instead of a) and nonheterogeneity, respectively. The upper
dotted-dashed lines are from the approximation (4).

PRL 98, 258101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
22 JUNE 2007

258101-3

Limiting similarity

a(x)=a exp(-x/L), threshold=1

left: varying a, L=0.1
right: varying L, a=0.1

continuous: no heterogeneity
dashed: 10% heterogeneity
dot-dashed: upper bound

d

dt
ni = ni
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�

j

a(|xi − xj |)nj



 i, j = 1 . . . N
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Clumps in niche models

http://ifisc.uib-csic.es

Motivation

Neither a limiting similarity scenario nor the 
opposite. Mixed behavior:  
CLOSE COEXISTENCE + EXCLUSION ZONES

LV model with Gaussian competition G(|u-v|). 

Scheffer & Van Nes, PNAS 103, 6230 (2006).
Self-organized similarity, the evolutionary emergence 
of groups of similar species

http://ifisc.uib-csic.es

Motivation

Neither a limiting similarity scenario nor the 
opposite. Mixed behavior:  
CLOSE COEXISTENCE + EXCLUSION ZONES

LV model with Gaussian competition G(|u-v|). 

Scheffer & Van Nes, PNAS 103, 6230 (2006).
Self-organized similarity, the evolutionary emergence 
of groups of similar speciesfor large L (0.2 ~ 0.3) and periodic boundary condition, 

clumps of species separated by exclusion zones

clumps shrink to single peaks (over long times) and are 
stable if intraspecific competition is enhanced

G(x) = a exp
�
−X2/L2

�
from: Scheffer and Van Nes (2005)
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From species to distributions
d

dt
ni = ni



r(xi)−
�

j

a(|xi − xj |)nj



 i, j = 1 . . . N

if growth rate constant r(x)=r then homogeneous solution n(x,t) = r/a

∂tn(x, t) = n(x, t)
�
r(x) + a

�
G(|x− y|)n(y, t)

�

�
G(x)dx = 1G(x) kernel function, 

n(x, t) density of individuals at trait x and time t
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stability of homogeneous state

n(x, t) = r/a stable when: G̃(k) =
�

exp(ikx)G(x) > 0 ∀k

- which competition functions satisfy this condition?

Pigolotti, Lopez, Hernandez-Garcia, Phys. Rev. Lett. (2007)

∂tn(x, t) = n(x, t)
�
r + a

�
dy G(|x− y|) n(y, t)

�
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Playing with G(x)
4
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Fig. 1 Three interaction kernels (top) and species distributions arising from simulation of
the model after 1000 generations (bottom). a) Exponential competition (p = 1); b) Gaussian
competition (p = 2); and c) box-like competition (p = 4). Simulations are initiated with 200
species randomly distributed, K = 10, and σ = 0.3.

kernels are more peaked around y ≈ 0 and for p > 2 they become more box-like (see
Fig. 1).

Note that when competition coefficients are constructed by the formula (2), i.e. from
the overlap of two utilization functions, they are always positive definite, meaning that
∑

ij aiGijaj ≥ 0 for any set of numbers ai (Roughgarden 1979) or, equivalently, that

the Fourier transform of G(y), defined as G̃(k) =
∫ +∞
−∞

dx G(x) exp(ikx), does not
take negative values. This property holds for the family of kernels (3) for p ≤ 2, but
not for p > 2 (Fig. 1). The Gaussian kernel is therefore marginal in the sense that,
corresponding to the limit case p = 2, even a very small perturbation may violate its
positive definite character, generally believed to be an ecological requirement arising
from expression (2).

An intuitive explanation for the appearance of the exclusion zones for p > 2 is
the following. Interaction kernels with large p have a box-like shape. In these cases
species compete very strongly with other species, roughly within a distance ±σ from
their own niche value. Species with a niche x in that range will therefore not be able
to invade the resident species, leading to the exclusion zones between them. When p is
decreased, the resident species compete less and less with neighbouring species, until
the exclusion zones disappear, leading to the possibility of continuous coexistence.

Understanding the fact that the transition occurs at p = 2, and also the coexistence
of more than one species in each cluster, requires a mathematical stability analysis of
the model. Consider the uniform solution, in which many species having the same
abundance are densely packed in niche space. Now perturb each population by a small
quantity ∆Ni, which can be either positive or negative. If the competition kernel
is not positive defined, there are sets of perturbations such that

∑

∆NjGij∆Ni is
less than zero. One can show that such perturbations are amplified by the dynamics
(Pigolotti et al. 2007), making the uniform solution unstable. The system will then
evolve to a clustered state, where the distance between clusters is proportional to the
interaction range σ.

We mention here that a possible generalization is to consider multi-dimensional
niche spaces. This possibility would complicate the mathematical notation but does

a) Exponential    b) Gaussian   c) Quartic

general family of kernels:

stable when 

G(x) = exp[−(x/L)σ]

σ ≤ 2 Gaussian is borderline!
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utilization functions -> no clumps
Self-organized similarity, the evolutionary emergence
of groups of similar species
Marten Scheffer* and Egbert H. van Nes

Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 8080,
6700 DD, Wageningen, The Netherlands

Edited by Stephen R. Carpenter, University of Wisconsin, Madison, WI, and approved February 21, 2006 (received for review September 16, 2005)

Ecologists have long been puzzled by the fact that there are so
many similar species in nature. Here we show that self-organized
clusters of look-a-likes may emerge spontaneously from coevolu-
tion of competitors. The explanation is that there are two alter-
native ways to survive together: being sufficiently different or
being sufficiently similar. Using a model based on classical com-
petition theory, we demonstrate a tendency for evolutionary
emergence of regularly spaced lumps of similar species along a
niche axis. Indeed, such lumpy patterns are commonly observed in
size distributions of organisms ranging from algae, zooplankton,
and beetles to birds and mammals, and could not be well explained
by earlier theory. Our results suggest that these patterns may
represent self-constructed niches emerging from competitive in-
teractions. A corollary of our findings is that, whereas in species-
poor communities sympatric speciation and invasion of open
niches is possible, species-saturated communities may be charac-
terized by convergent evolution and invasion by look-a-likes.

biodiversity ! coexistence ! competition ! evolution ! niche construction

One of the classical puzzles in biology is the question how so
many species can coexist in nature (1). Niche differentiation

is obviously an important aspect. However, it is clear that other
mechanisms must be involved, as similarity in coexisting species is
often striking. For instance, in planktonic communities, impressive
numbers of species coexist in a seemingly homogeneous habitat
with little scope for niche differentiation (2), and in tropical
rainforests numerous similar tree species coexist (3). An explana-
tion that is close to the intuition of many naturalists is that the niches
of all of these seemingly similar species really differ in aspects that
are not easily detected. Another, slightly less intuitive class of
explanations for the coexistence of so many species in nature is that
various mechanisms may help to prevent competitive exclusion.
Examples are predation (4, 5), chaotic population dynamics (6, 7),
environmental variability (2, 8, 9), and incidental disturbances (10,
11). The interaction of such mechanisms at multiple scales of space
and time may maintain much of the biodiversity observed in nature
(12, 13). A rather different aspect is stressed in the neutral theory
of biodiversity (3, 14) that sparked some controversy over the past
years (15). The essential assumption is that species are equivalent,
so that no species can out-compete another. Although it may be
argued that species sharing an ecological niche and facing the same
fundamental tradeoffs will coevolve to have roughly the same
competitive power (16), real neutrality is of course a limit case (17),
and the results have been shown to be quite fragile to relaxation of
the assumption (18, 19). Nonetheless, one may ask whether strong
similarity might in some way still help to facilitate coexistence.

To explore how we might bring the seemingly disparate worlds of
niche and neutral theory together, we use a classical Lotka–
Volterra competition model

dNi

dt ! rNi"Ki " #
j

#i, jNj$%Ki i ! 1,2, . . . n; #i, j ! 1,

[1]

where Ni is the density of the species i, r is the maximum per capita
growth rate, Ki is the carrying capacity of species i, and #i,j is the
competition coefficient scaling the effect of species j on species i.
We chose the competition coefficients in such a way (see Methods)
that the model mimics competition between species along a niche
gradient (Fig. 1).

Pattern Formation in Communities of Competing Species
As a first approach to analyze how competition along a niche axis
would structure a community, we place a large number of species
at random positions on an infinite niche axis (mimicked by making
it circular, see Methods) and compute the resulting competition
coefficients. We then run the competition model to see to which
state it converges. Although one would intuitively expect that the
survivors of this competition game would be species that are equally
spread out over the niche axis, the surprising result is that simula-
tions converge to a very long transient pattern of self-organized
lumps that contain multiple coexisting species of similar size (Fig.
2a). Numerical experiments (not shown) revealed that the distance
between species lumps on the niche axis depends on the niche width
of the species in the sense that the lumps are spread further apart
if the standard deviations of the species size distributions (the
niches) are broader. Thus, coexistence of different lumps is a
straightforward effect of avoidance of competition. However, spe-
cies that are similar enough apparently escape this rule of limiting
similarity and may coexist within the lumps.

Although this pattern of lumpy coexistence is transient, it can
exist for thousands of generations (defined as 1&r). Eventually one
species in each hump survives, giving rise to the intuitively expected
pattern of equally spaced single species. However, it has been
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This paper was submitted directly (Track II) to the PNAS office.

See Commentary on page 6083.

*To whom correspondence should be addressed. E-mail: marten.scheffer@wur.nl.

© 2006 by The National Academy of Sciences of the USA

Fig. 1. To study competition, we place species randomly along a hypothet-
ical niche axis. To facilitate an intuitive interpretation, one may think of the
niche axis as a gradient that is related to the size of organisms. If we assume
that individuals of the same size compete strongest, niche overlap and result-
ing competition coefficients can be computed (45) for sets of species of given
size distributions (see Methods).

6230–6235 ! PNAS ! April 18, 2006 ! vol. 103 ! no. 16 www.pnas.org&cgi&doi&10.1073&pnas.0508024103

G(x− y) ∝
�

u(x− z)u(y − z)dz

any competition function 
constructed as an overlap: 

never leads to clumps 
(Roughgarden 1979)  

- one can construct more general 
utilization function (e.g. depending on 
trait) resulting in unstable kernels 

G(x− y) ∝
�

u(x, z)u(y, z)dz
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The clumps revisited

http://ifisc.uib-csic.es

Motivation

Neither a limiting similarity scenario nor the 
opposite. Mixed behavior:  
CLOSE COEXISTENCE + EXCLUSION ZONES

LV model with Gaussian competition G(|u-v|). 

Scheffer & Van Nes, PNAS 103, 6230 (2006).
Self-organized similarity, the evolutionary emergence 
of groups of similar species

Gaussian is marginal, role 
of boundary condition

http://ifisc.uib-csic.es

The Gaussian kernel.

Scheffer & Van Nes, PNAS 103, 6230 (2006). Use a Gaussian Kernel and they
obtain a lumpy distribution?? It is a numerical effect arising from the way
periodic boundary conditions are implemented. 
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Our
work

n
nLygyg )()(

L system size and
n=0, +-1, +-2,…

This sensibility is not so strong for other non-marginal kernels

G

truncationno truncation

Pigolotti, Lopez, Hernandez-Garcia, Andersen, Theo. Ecol. (2010)
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Gaussian + evolution
6
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Fig. 2 Final populations after 500 000 generations with speciation and extinction. Species
whose population goes below 0.1 are removed from the system. Every 100 generations new
species are introduced close to an existing one. The parent species is chosen with a probability
proportional to its population; the distance of the new species to its parent is drawn from a
Gaussian distribution of zero mean and spread σp = 0.02. The new species j is introduced
with a population uniformly drawn from the interval N ∈ [2, 3]. (left panel) Gaussian kernel
(p = 2) and (right panel) exponential kernel (p = 1). Simulations are performed under perfect
periodic boundary conditions. K = 10 and σ = 0.3.

species distribution, even for p = 2 (Fig. 2). However, the same mechanism has no
effect if an exponential competition kernel (p = 1) is chosen. The interpretation is that
evolutionary effects favor the formation of lumpy species distributions, but only when
the competition kernel is close to the Gaussian limiting case.

Effects due to truncation

The most obvious numerical simplification is to only partially implement the periodic
boundary conditions, by omitting the kernel wrap around the niche interval, that is,
using G(y), with y being the minimum of the two possible distances among species i
and j (|xi − xj | and 1− |xi − xj |), instead of the periodic kernel Gp(y). The resulting
effective kernel is Gaussian but truncated at |y| = 1/2, making it no longer positive
definite. Although the shapes of G(y) and Gp(y) are still very similar for the parame-
ters used here (σ = 0.3), the change immediately leads to lumped species distributions
(Fig. 3). In contrast, for p = 1 (or any other values of p < 2 which we have checked),
changing Gp(y) by G(y) has no noticeable effect. Qualitatively, the dynamics for trun-
cated Gaussian kernels resembles the outcome when the exponent of the competition
kernel is perturbed just slightly. E.g. using p = 2.1 instead of p = 2 also leads to lumped
species distributions, even when fully periodic boundary conditions are implemented
(not shown). We should remark that neither the truncated Gaussian nor the truncated
exponential kernel are positive defined. The explanation of the different result is the
following: the instability of the exponential kernel develops for very high frequencies,
exponential in the ratio between the system size and the kernel range, while the trun-
cated Gaussian develops a low-frequency instability, proportional to the same ratio (see
next subsection). This means that, when the niche space is large enough compared with

- species with small population 
go extinct

- new species are placed close 
to existing ones

left: Gaussian, right: Exponential

Pigolotti, Lopez, Hernandez-Garcia, Andersen, Theo. Ecol. (2010)
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Take home message

- The good side: 
Gaussian competition leads to interesting phenomenology

- The bad side: 
Gaussian competition is risky and unrobust
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Fitness landscape
d

dt
ni = ni



r(xi)−
�

j

a(|xi − xj |)nj



 i, j = 1 . . . N

- now r(x) is not constant, example: preferred phenotype ( r(x) peaked)

- result: if a coexistence solution exists, the stability still depends on a(x) not 
having negative Fourier modes 

Hernandez-Garcia, Pigolotti, Lopez, Andersen, Phyl. Trans. Roy. Soc. A (2009)
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Fitness landscape
d

dt
ni = ni



r(xi)−
�

j

a(|xi − xj |)nj



 i, j = 1 . . . N

Roughgarden (1972), Szabo and Meszena (2006)

x!/m give advantage to the two species next to these
ranges. And so on, the competitive advantages and
disadvantages build up gradually and a discrete species
distribution emerges.

The realistic case: fractal-like carrying capacity
functions

While the smooth Gaussian function in the role of the
carrying capacity curve leads to continuous coexistence,
a function with abrupt changes seems to result in
limiting similarity in the usual sense. These extremes
cannot tell us, however, what is the typical situation.
As a representative of a more natural function, we

investigate fractal-like perturbation of the Gaussian
carrying capacity. We chose:

K(x)!exp
"x2

2v2
(1#f(x)) (11)

where the perturbation term:

f(x)!k
X

L

i!1

bicos(gix#8i) (12)

consists of periodic components with random phases.
The parameters k and g are constants. The amplitude of
the ith periodic component is

bi!1=in (13)

The phases 8i were chosen randomly for each simulation
run. The exponent h characterizes the fractal properties.
h!/0 for a white noise; Brownian motion is character-
ized by h!/1.

We stress that, since 8is remain constant during a
single run of the simulation, the random choice of them
does not introduce stochasticity into the dynamics.
Instead, this randomization ensures that each simulation
uses a different carrying capacity curve, characterized by
a common fractal exponent. Accordingly, each data
point in Fig. 5 and 6 represents an average over a class of
models.

Figure 5 shows the results with h!/0, 1, 1.5 respec-
tively. All simulations ended up with survival of a limited
number of species. The number of species at equilibrium
and, consequently, average phenotype distances change
with h. The number of coexisting species was averaged
over 50 simulations, differing in the random phases, for
each h and s combination (Fig. 6).

Distances increase with s in all cases and the slope of
the fitted line remains in the range 1.9s"/2.6s. The
departure from the linear dependence on Fig. 6 is related

Fig. 3. Phenotype difference between adjacent survivors as a
function of s and the fitted linear regression line (solid line) for
rectangular carrying capacity. Phenotype difference values are
calculated as the number of species at equilibrium divided by
the length of the phenotype interval. The steepness of the linear
regression line is 1.82.

Fig. 4. Species distribution for
different competition widths 2s,
when the carrying capacity
function is composed from two
Gaussians. Competition width
increases from left to right; s!/

0.04, 0.08, 0.16 in subfigures (a),
(b), (c) respectively. Other
parameters: v1!/0.3,
v2!/0.03, a!/0.1, m!/"/0.3.

Fig. 2. Species distribution
with rectangular carrying
capacity function for
different competition widths
2s. Only a finite number of
species coexist. The number
of coexisting species
decreases with increasing s.
Parameters: b!/0.6, c!/5,
s!/0.04, 0.08, 0.16 in sub-
figures (a), (b), (c)
respectively.
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rates were wery close to zero. The number of coexisting
species was assessed by counting species that were
present and exhibited nonnegative growth at t!/10 000.
This criteria was applied to exclude populations which
were bound to extinction, but eventually existed at that
time.

Results

Roughgarden’s example for continuous coexistence

Roughgarden’s (1979) example employs the Gaussian
carrying capacity function:

K(x)!exp
"x2

2v2
(7)

where v denotes the half-width of this curve. Then the
Gaussian species distribution:

n(x)!
v=s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p(v2 " s2)
p exp

"x2

2(v2 " s2)
(8)

is an equilibrium solution of Eq. 4, provided that v!/s.
In this case, infinitely many arbitrarily similar species
may coexist along the phenotype axis.
We reproduced this analytical result numerically

(Fig. 1). All of the populations, that were present
initially, survived. In agreement with Eq. 8, the equili-
brium distribution of the population densities followed a
Gaussian curve. Increased competition width s led to
a narrower distribution of densities. Obviously, when
vB/s, i.e. when the carrying capacity is narrower than
the competition width, only the species x!/0 survives
(not shown).
Other simple carrying capacity functions: no contin-

uous coexistence
The rectangular function:

K(x)! c; if x " ("b; b)
0; if xQ("b; b)

"

(9)

which is zero outside an interval, is the next simple
choice for the carrying capacity curve. In contrast to
Roughgarden’s case, most of the populations go extinct.
Only a very limited number of species coexist at
equilibrium (Fig. 2).

The average phenotype difference between adjacent
survivors can be calculated by dividing the total
phenotype interval with the number of coexisting species.
As plotted in Fig. 3, this difference increased with s
linearly with great accuracy. The steepness of the linear
regression line was found to be 1.82. That is, in
agreement with the classical expectation, the coexisting
species were spaced roughly by the competition width
2s.

It is easy to interpret this result in qualitative terms.
The two species, which are located at the two ends of the
livable range, gain advantage from the lack of competi-
tors on one of their sides. Then, competition by these
high-density species causes extinction within their range
of competition. Two empty ranges emerge which, in
turn, give advantage to two species, located at the inner
ends of the empty ranges. And so on, a discrete
distribution emerges.

The perturbation, that renders the coexistence of
infinitely many strategies impossible does not have to
be so abrupt. We get similar results if K(x) is a sum of
two Gaussian functions as:

K(x)!exp
"x2

2v2
1

#a exp
"(x" m)2

2v2
2

(10)

with v1!/s!/v2. The first Gaussian, when alone,
would maintain a continuous coexistence. In contrast,
the second one supports a single phenotype, namely
x!/m.

Figure 4 demonstrates the emerging species distribu-
tion. The second term of Eq. 10 gives an advantage to
species x!/m. The high density of this species causes
extinction of each species within its range of competi-
tion. Then, the empty ranges on both sides of species

Fig. 1. Species distribution
with Gaussian carrying
capacity function for
different competition widths
2s. On each plot, dashed
line depicts the shape of the
carrying capacity curve,
normalized to a given
height. Black region denotes
the population distribution.
Variance of the bell-shaped
species distribution
decreases with increasing
competition width.
Parameters: v!/0.3;
s!/0.04, 0.08, 0.16 in
sub-figures (a), (b), (c),
respectively.
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Gaussian competition, 
Gaussian r(x) (continuous 
coexistence)

Gaussian competition, 
Box r(x) (no continuous
coexistence)
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Summary
Three ways of breaking down continuous coexistence

- limiting similarity mechanism (heterogeneity, 
thresholds

- “sharp” r(x) (or K(x)) breaks down the solution like 
in the box function case

- instability coming from the choice of the kernel
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(open) questions

- Functional response?

d

dt
ni = ni



r(xi)−
�

j

a(|xi − xj |) nj

k(x) + nj



 i, j = 1 . . . N
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(open) questions
- Functional response?

- More trophic levels?

d

dt
ni = ni



r(xi)−
�

j

a(|xi − xj |) nj

k(x) + nj



 i, j = 1 . . . N
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 ecological equivalence: all individuals have the same 
birth rate, death rate, immigration rate…

•Ingredients:
•lottery dynamics + immigration (speciation)
•spatial (lattice) models: variations of voter models

S.P. Hubbell, The unified neutral theory of biodiversity and Biogeography (2001)

capewest.ca

in analogy with Kimura’s genetic theory, but 
harder to justify (equalizing mechanisms?)

-> working hypothesis

Neutral competition

lunedì 25 ottobre 2010



S. Pigolotti  ICTP, 24/10/2010

S∝cAz  z is scale-dependent
z≈1  for small & large scales
z<1   non-trivial (intermediate scales)

from Horner-Devine et al (2004)

Species-Area Relations: Phenomenology
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2d LxL-lattice, one individual per site 

Dynamics: pick a random site, kill the 
resident 

individual; then with probability

 1-ν copy an individual in the  
“neighborhood”

 ν place an individual from a 
“new” species (immigration/speciation)

A neutral IBM
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Nearest-Neighbor
General Kernel
of range K 
(e.g. Gaussian, Square) 

Dispersal

lunedì 25 ottobre 2010



S. Pigolotti  ICTP, 24/10/2010

SAR for ν=10-5  K=10

K2 ν-1

SARs features are well
reproduced by the model

(Durrett and Levin 1996, Hubbell 
2001, Chave et al. 2002, Rosindell et 
al 2007)

Intermediate range: 1. How z depends on the dispersion kernel?
2. How z depends on the speciation rate?

z<1

z≈1

z≈1

SP and M. Cencini, Jour. Theo. Biol. 260:83-89 (2009), arXiv:0902.3906 

Result: SAR with voter model
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The multitype voter model (backward in time) maps onto a problem of
 coalescing random walker with a killing rate (Liggett, 1985) 

    

• Birth of individuals  
 from neighboring sites 

• Speciation event

Forward description Backward description

• Movement/coalescence of    
walkers

• Killing of a walker

Advantages: MUCH faster simulations, open boundaries, helps physical insight

Coalescent approach
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Results: dispersal range

The exponent is independent on the dispersal range
     

         r ~1.93    (Rosindell et al 2007)

 Corrections for small K only (like NN case)
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Local exponent

Which kind of functional dependence?

Results: speciation
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Simulations confirm DL96 logarithmic 
scaling but with a different prefactor 
(pre-asymptotic effects?)

with q=-3.3  m=-0.72

z vs speciation
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Do we have data?
A difficult comparison: no realiable 

data on speciation rates

We look at the definition of the adimensional speciation rate

 t=lifespan of the individual of a specie 
 ts=waiting time for a new specie

Realiable estimate of t are possible!

how does z depend on lifespan?

lunedì 25 ottobre 2010



S. Pigolotti  ICTP, 24/10/2010

A difficult comparison: no realiable 
data on speciation rates

We look at the definition of the adimensional speciation rate

 t=lifespan of the individual of a specie 
 ts=waiting time for a new specie

Realiable estimate of t are possible!

how does z depend on lifespan?

lunedì 25 ottobre 2010



S. Pigolotti  ICTP, 24/10/2010

1/z ∝log(t)

A conjecture
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1/z ∝log(t)

ts∝tw

From the voter model 

1/z=m log(ν)=m(log(t)-log(ts))+

A conjecture
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1/z ∝log(t)

ts∝tw

From the voter model 

1/z=m log(ν)=m(log(t)-log(ts))+

The observed slope implies w<0 which is unreasonable
(bacteria’s speciation time would be much longer than that of trees)

A conjecture
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