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lake home message

* Modeling of competition in large populations (ecology, traffic, financial markets,
etc)

* Evolution population = individual learning
* Individuals are not small, even in large populations

* Symmetry of Nash equilibria (specialization):
Specialization requires minimal form of rationality (account for your impact)
Specialization expected in crowded environments

* Warning: lots of maths, very little ecology...



The setting

preferences

® N agents P resources

constraints

E.g. financial markets (speculators and information patterns),
commodity markets (buyers and sellers),
production economies (firms and goods’ markets),
urban traffic (vehicles and streets),
internet traffic (surfers and Internet),
ecosystems (species and resources), ...

adaptive agents = preferences + bounded rationality
noise = experimentation, environmental volatility, ...

® Question:

collective == F structure of degree of
behavior preferences 9 rationality 9 *°**

Order - disorder transition: \ \

symmetric (mixed strat.) |dentical/heterogeneous Learning, memory,...
asymmetric (pure strat.) agents and/or resources



Iwo equivalent resources

*  One species, two resources

Individuals
* Drivers, two roads (D. Helbing)

Origin Destination

+ Traders, two stocks

+1 -1

* Game theory:
Payoff matrix (2x2 game) S R e
Pairwise random matching (Nx2 game)




Modeling competition: Kvolution

* A population of N individuals is associated to each strategy s=+1

* Fitness = payoff in game with random opponent

dNS = Usg Ns dt uszl - Ng Ng = Ns/N

# ... replicator dynamics...
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* J. Maynard-Smith Evolution and the theory of games, Cambridge (1982)
J. W. Weibull, Evolutionary game theory, MIT (1995) (imitation ~ evolution)



Modeling competition: L.earning

* Reinforcement learning
* N (fixed) individuals

+ Each individual attach a score Us; to each resource:
Prior beliefs: Us,:(0)=0
Reward resource depending on payoff: Us;(t+dt) = Us;(t) + 1-ng
Choose resource with highest score: P{si(t)=s} ~ exp[['Us;(t)], I'>0

* ... P{si(t)=s} follows same dynamics as ns = Ns/N in replicator dynamics
—=ns—>1/2 (individuals learn to flip coins!)

* Fudenberg, Levine The theory of learning in games MIT (1998)
Rustichini, Games and Econ. Behav., 29, 244-273 (1999).



Back to game theory

EINED) el
* Symmetric Nash equilibrium: sl 1E0) 1
P{s=+1}=1/2 (mixed strategy) e 0

* Asymmetric Nash equilibrium:
si=+1, so=-1 or si=+1, sp=-1 (pure strategies)

* N individuals (random matching): us =1 - n
1 symmetric Nash equilibrium: P{si=+1}=1/2 Vi
Exponentially many asymmetric Nash equilibria!



(Questions

* Efficiency:
symmetric NE: sqrt(N) individuals make the wrong choice!
asymmetric NE: at most one in worse resource (but can’t do better)

* Why do individual fail to learn the optimal NE?
Account for yourself when learning (counterfactual)!

Us:(t+1) = Us;(8)+T[1—ng(t) 1Sl = =
= Us;(t)+T[1—ns(t) —1/N] if s;(f) # s




A small term with big
consequences

+ Plsi(t)=+1}=pi(t) T =

* Learning : 7

J71
* Lyapunov function: > )
1|1 i
ah = ol e s = e )i
1= 3 sz:( il v i( pi)
1
* Note: 2nd term gets relevant when p, ~ — 4 ¢
(late stage of dynamics) 2

* Minima of Hy: pi=0 for half of i’s and 1 for the rest! (V2 Hy = ())



Extensions

* Holds for any N, even for N—co

* For any number P of resources and

heterogenous agents (N,P—o)
(Challet, MM, Zhang Minority Games, Oxford 2005)

* For any population playing a symmetric game

Dirk Helbing

with equilibria in mixed strategy &
(why are there bakers, plumbers, researchers, ...?) /;/@ Y )
(Borkar, Jain, Rangarajan, Complexity 3, 50-56, 1998) N}
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* Verified in experiments of route choice games -
(Helbing, Shonhof and Kern, New J. Phys. 4, 33.1-33.16 2002) < S i
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possibly relevant for

Kellogg Company (K) June: 53.98 0.00 (0.00%)

* Price taking behavior in financial markets L
excess volatility
(MM Challet Adv. Complex Sys. 3, 3-17 2001)

Regularization in portfolio optimization
(Caccioli, Still, MM, Kondor arxiv 2010)
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* The beak of the finch
(Weiner, The beak of the finch, Vintage books)
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10 min break?




On the structure of
preferences

Background:

Decentralized exploitation of resources by many agents
Structure of preferences and degree of rationality
Order-disorder transitions: Symmetry, luck and institutions

Uncorrelated preferences

|dentical agents/resources: Route choice game
Heterogeneous agents/resources: El Farol bar problem and Minority Game

Aligned preferences

Parking in Marseille
A stylized model

Conclusions



To specialize or not to specialize, this is the problem
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Table 1. Occurrence Matrix for Darwin’s Finch Data

Island

Finch A B C D E F G H [ J K L M N 0 P Q

Large ground finch 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

Medium ground finch 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0

Small ground finch 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0

Sharp-beaked ground finch 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1

Cactus ground finch 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0

Large cactus ground finch 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Large tree finch 0 0 1 1 1 1 1 1 1 0 o0 {1 0 1 1 0 0 pure
Medium tree finch 0. . 0. 0. 000 0. 0. ... 0.1 0.....0 ... 1. Q... 0.0 ... 0. 0. <€

Small tree finch S T T T T T e s S T B S Y S strategy
Vegetarian finch 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0

Woodpecker finch 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0

Mangrove finch 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 .
Warbler finch LI LI LI L T LI L LIRSS, BEUUUR BEUUUNR SEUURRR SRR LS B LI 1 <€ mixed

MOTE: lsland name code: A = Seymour, B = Baltra, C = Isabella, D = Fernandina, E = Santiago, F = Rabida, G = Pinzén, H = Santa Cruz, | = Santa Fe, J = San Cristébal, K = Espanola,

L =Floreana, M = Genovesa, M = Marchena, O =Pinta, P = Darwin, Q =Wolf. Strategy

Weiner, The beak of the finch (Vintage Books)
(courtesy of A. De Martino)



The setting

preferences

® N agents P resources

constraints

E.g. financial markets (speculators and information patterns),
commodity markets (buyers and sellers),
production economies (firms and goods’ markets),
urban traffic (vehicles and streets),
internet traffic (surfers and Internet),
ecosystems (species and resources), ...

adaptive agents = preferences + bounded rationality
noise = experimentation, environmental volatility, ...

® Question:

collective == F structure of degree of
behavior preferences 9 rationality 9 *°**

Order - disorder transition: \ \

symmetric (mixed strat.) |dentical/heterogeneous Learning, memory,...
asymmetric (pure strat.) agents and/or resources



Uncorrelated or aligned

preferences!

® Uncorrelated preferences:
pure coordination

® Aligned preferences:
coordination + competition

® Symmetric or asymmetric states?

phase transitions

social norms and institutions
luck and property rights

Origin Destination
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How much rationality?

Zero intelligence: agents as automata

Naive agents:
play against Nature (e.g. price taking behavior)

Sophisticated agents:
account for feedback of own actions on Nature

Strategic agents (players) and common knowledge of
rationality

|. types of self-organization and degrees of rationality
2. degree of complexity and learnability



Even for n-2o !

Uncorrelated preferences:
ldentical agents/resources

n agents, two actions: ai=%1, Origin | Destination
payoff: u=-aiA, A=2aj Ly \ A
t "—’

Symmetric NE: P{ai=+1}=1/2 for all i
Unique
Large fluctuations n+ - n. ~ sqrt(n)

Asymmetric NE: aj=+1 for i<n/2;ai=-1 otherwise
Exponentially many (in n)
Small fluctuations n+- n.~ O(I)

Naive reinforcement learning [A>0 — increase P{ai=-1}]
converges to symmetric equilibrium

+ impact:A - €23>0 — increase P{ai=-1}
converges to asymmetric equilibrium for all €>0

Verified in experiments (Helbing et al. 2005)



Uncorrelated preferences:

Heterogeneous agents/resources
(Minority Game)

Naive agents — “mixed strategy”’ equilibrium:

- unique
- even exploitation of resources o T
- large fluctuations s
- inefficient Or e
- easy to learn e
Sophisticated agents — pure strategy equilibrium: W
- large degeneracy i B density
- minimal fluctuations > " B =N
- most efficient .g% S - e
- hard to learn in a “volatile world” &;é b somassasmons

(Challet, MM, Zhang, Minority Game, OUP 2005) &



Aligned preferences



Examples:

Looking for a parking

Securing a territory or nesting sites, or establishing
pecking order in animal populations

Settlements and colonies

Users and printers/CPU

Agents access resources when needed (volatility)



Parking in Marseille

(Kirman, Hanaki, MM, JEBO to appear)

® Population of n agents either
® at home: going to work at rate N
® at work: leaving the parking at rate |
® n parking slots on one way street to office
® payoff for parking at s=1,..,n:u(s) { s
® Strategy: go up to spot k and then park in first empty spot

® if no empty slot found, payoff = - L
(need to go all the way around to find parking)



Symmetric and asymmetric equilibria and luck

® Take the parking example:
“Unlucky” people park at the first empty spot.
» “Lucky” people keep going closer to the office and find an
empty spot.
» “Unlucky” people think, there will not be empty slots
closer to the office because others take them.

o But it 1s because “unlucky” people not trying to park closer,
there are empty slots for “lucky”™ people closer to the office.

» And because they have learned to behave 1n such ways,
these outcomes repeat themselves.
® Lucky ones are not “born under a lucky star” but they have

learned to be so.

(Kirman, Hanaki, MM, Born under a lucky star? preprint @ IDEAS, to appear on |JEBO)



A simpler model

n agents, n resources with exclusive use

Agents on a resource leave it at rate |

Agents not on resource, look for a free resource at rate I

Strategy:
order s, sy, ..., Sn With which agents search for resources
Payoff:
A
Resource s=1,...,n

utility

utility u(s) 1 s if free
if occupied, agent pays cost ¢
and needs to search further resources




Naive agents: symmetric equilibrium
(stationary state)

® i) agents know the probability p™ that resource m is free

® i) agents adopt mixed strategy: P{go to resource m}=g™m

pmWT0—=1] = (1-p")W"[1 — 0]
wml1—-0 = 1
Wwmo—1 = (n—Rw™0— 1]
w0 =1 = ng™+ | > g"(1—p™)| w0 — 1
| m/#m i
ng" _ m, m
= = ,  P=) gD
p+(1—pm)gm zm:

® R = number of occupied resources

PR = (0) et

r) (1+n)"




Naive agents: ||

This gives p™ as a function of g™

Expected utility: E[u(g)] = > g™ {p™u™ + (1 —p™)[Elu(g)] - d}
L m o C(l o p) S m._m..m
= = , pu = Py
p m
Solve: IIgl%\X< Elu(g)] — A (zm:g — 1) }
I 5
Result: p™ = CPutAp m < m*(\¥) A T m

pu™ —pu + ¢’

~ 1, m > m*(\") X
u™ ) = A*D + normalization — \* :




Asymmetric NE

® Consider the equilibrium where agent i goes each time
to resource |

® |s this a Nash equilibrium?

® Deviation: agent n tries to occupy resource |:
E[Udeviation] = u(1)P{l free} + (1-P{l free})[u(n)-c] > u(n)
if N > [u(l)-u(n)]/c

~ symmetric 7 totally asymmetric
equilibrium . equilibrium

N~ O(n° [u(l)-u(n)}/c ~ O(n)



Should agents remember
where they came from!

Agents have, in principle access to the information of past
visited and attempted resources and the time elapsed

If this information allows them to gain a higher payoff,
wrt the symmetric equilibrium, it is evolutionarily
advantageous to store it

Consider the strategy misc — g where agents first return
to the last occupied site and, if this is occupied by
another agent, play g

Proposition: This strategy invades g



Example: 2 agents

Symmetric equilibrium with (temporarily) asymmetric allocation

Proposition 2.1. A Nash equilibrium of the two player game, where agents remember which
resource they last visited and when, is the following.

Call A = =="2_ If A < then one of the two agents will always exploit resource 1, while the
other will always exploit resource 2.

If instead A > n there is a time T > 0 such that both agents act according to the following
strateqy:

a) if the last resource occupied was 1, then first try resource 1, if 1 is occupied go to 2;

b) if the last resource occupied was 2 then

1) if the other agent was last seen t < T time ago, then return to resource 2;

2) if the other agent was last seen t > T time ago, then first try resource 1, if 1 is
occupied go to 2;

1 | A +1
7-_1—|—77 0 A—n 1 — e~ (1+m)t

Idea: P{1 free} = T St
Y




Generalizing to n agents

® Information: () = A7, 2}
7" € Ry = time of last visit of ¢ to m
2" €4{0,1} = occupation of m at 7"

e Compute
q." (t) = P{m free|S;(t)}

® Proposition: ¢;"(t) determines the optimal

search strategy of agent ¢ at time ¢

If u™ — ¢/q™(t) > u™ —c¢/q™ (t) then m >; m/

Proof:  ¢"um + (1 —q¢") |—c+ q¢up, — (1 —¢q) (—c+1I)] >
g un + (1 —q") |—c+ ¢"um — (1 = ¢') (—c + 1I)]

N——"



Simulations

A minimal implementation:

qgn(t) ~ pm (1 — 6_(75_75?1)/197%) 4+ (1 _ Z;mJ) 6—(t—t;n)/pm

Unconditional probability p™ assumed common knowledge
Linear utility: u(s) = n-s

Measure of residence time of resource m
= average time spent by the same agent on resource m

Simulations for t/n = 103, averages taken on last half period



Localization for n « n
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The safe middle property

n=100, c=1 c=0.5
o N=256
) ' ) N=256 |
= E
é 100 F é 100 F n=|28
n=64 | " n=64 ft

0 10 20 30 40 50 B0 70 80 90 10 0 10 20 30 40 50 B0 70 80 90 100
resource resource

Intuition: agents on lousy resources will risk looking for
other resources only if utility gain is large enough.
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Conclusions

Different types of self-organization require different
degrees of rationality

Asymmetric states can be achieved when agents
understand and account for their impact on “Nature’

’

When preferences are aligned:

® Memory is evolutionarily advantageous, specially in
crowded contexts

® Order nucleates from the middle



Thanks



