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Take home message

✤ Modeling of competition in large populations (ecology, traffic, financial markets, 
etc)

✤ Evolution population = individual learning

✤ Individuals are not small, even in large populations

✤ Symmetry of Nash equilibria (specialization):
Specialization requires minimal form of rationality (account for your impact)
Specialization expected in crowded environments

✤ Warning: lots of maths, very little ecology...



The setting
• N agents                             P resources

adaptive agents = preferences + bounded rationality
noise = experimentation, environmental volatility, ...

• Question:

preferences

constraints
E.g. financial markets (speculators and information patterns),
     commodity markets (buyers and sellers),
     production economies (firms and goods’ markets),
     urban traffic (vehicles and streets),
     internet traffic (surfers and Internet),
     ecosystems (species and resources), ...

= F(        ,       , ...)collective
behavior

structure of
preferences

degree of
rationality

Order - disorder transition:
symmetric (mixed strat.)
asymmetric (pure strat.)

Identical/heterogeneous
agents and/or resources

Learning, memory,...



Two equivalent resources

✤ One species, two resources

✤ Drivers, two roads (D. Helbing)

✤ Traders, two stocks

✤ Game theory: 
Payoff matrix (2x2 game)
Pairwise random matching (Nx2 game)

+1 -1

N Individuals

+1 -1

+1 0 1

-1 1 0



Modeling competition: Evolution

✤ A population of Ns individuals is associated to each strategy s=±1 

✤ Fitness = payoff in game with random opponent
dNs = us Ns dt        us=1 - ns         ns = Ns/N

✤ ... replicator dynamics...                         Lyapunov function ... ⇒ ns → 1/2

✤ J. Maynard-Smith Evolution and the theory of games, Cambridge (1982) 
J. W. Weibull, Evolutionary game theory, MIT (1995) (imitation ~ evolution)

ṅs = ns

[
us −

∑

s′

us′ns′

]

ṅ+ = n+(1− n+)(1− 2n+)

H =
1
2
(1− 2n+)2

Ḣ =
dH

dn+
ṅ+

= −2n+(1− n+)(1− 2n+)2 ≤ 0



Modeling competition: Learning

✤ Reinforcement learning

✤ N (fixed) individuals

✤ Each individual attach a score Us,i to each resource: 
Prior beliefs:                                                   Us,i(0)=0
Reward resource depending on payoff:    Us,i(t+dt) = Us,i(t) + 1-ns

Choose resource with highest score:         P{si(t)=s} ~ exp[ΓUs,i(t)],    Γ>0 

✤ ... P{si(t)=s} follows same dynamics as ns = Ns/N in replicator dynamics
⇒ ns → 1/2                                     (individuals learn to flip coins!)

✤ Fudenberg, Levine The theory of learning in games MIT (1998)
Rustichini, Games and Econ. Behav., 29, 244-273 (1999).



Back to game theory

✤ N=2 

✤ Symmetric Nash equilibrium:
P{s=+1}=1/2 (mixed strategy)

✤ Asymmetric Nash equilibrium:
s1=+1, s2=-1 or s1=+1, s2=-1 (pure strategies)

✤ N individuals (random matching): us = 1 - ns
1 symmetric Nash equilibrium: P{si=+1}=1/2   ∀i
Exponentially many asymmetric Nash equilibria!

+1 -1
+1 0 1
-1 1 0



Questions

✤ Efficiency:
symmetric NE: sqrt(N) individuals make the wrong choice!
asymmetric NE: at most one in worse resource (but can’t do better)

✤ Why do individual fail to learn the optimal NE?
Account for yourself when learning (counterfactual)!

Us,i(t + 1) = Us,i(t) + Γ [1− ns(t)] if si(t) = s

= Us,i(t) + Γ [1− ns(t)− 1/N ] if si(t) "= s



A small term with big 
consequences
✤ P{si(t)=+1}=pi(t)

✤ Learning

✤ Lyapunov function:

✤ Note: 2nd term gets relevant when
(late stage of dynamics)

✤  Minima of H1: pi=0 for half of i’s and 1 for the rest!

U̇+,i = Γ



1− 1
N

∑

j !=i

pj





H1 =
1
2

[
1
N

∑

i

(1− 2pi)

]2

− 1
2N2

∑

i

(1− 2pi)2

pi =
eΓU+,i

eΓU+,i + eΓU−,i

(
∇2H1 = 0

)

pi !
1
2
± ε



Extensions

✤ Holds for any N, even for N→∞

✤ For any number P of resources and 
heterogenous agents (N,P→∞)
(Challet, MM, Zhang Minority Games, Oxford 2005)

✤ For any population playing a symmetric game 
with equilibria in mixed strategy 
(why are there bakers, plumbers, researchers, ...?)
(Borkar, Jain, Rangarajan, Complexity 3, 50-56, 1998) 

✤ Verified in experiments of route choice games
(Helbing, Shonhof and Kern, New J. Phys. 4, 33.1-33.16 2002)

26 Dirk Helbing

Fig. 8. Schematic illustration of the decision experiment (from [117]). Several test
persons take decisions based on the aggregate information their computer displays.
The computers are connected and can, therefore, exchange information. However, a
direct communication among players is suppressed.

of persons choosing alternative 1. The system optimum corresponds to the max-
imum of the total payoff n1P1(n1) + n2P2(n2), which lies by an amount of

1
2N

P 0
1 − P 0

2

P 1
1 + P 1

2

(81)

below the user optimum. Therefore, only experiments with a few players allow
to find out, whether the test persons adapt to the user or the system optimum.
Small groups are also more suitable for the experimental investigation of the
fluctuations in the system and of the long-term adaptation behavior. Schreck-
enberg, Selten et al. found that, on average, the test groups adapted relatively
well to the user equilibrium. However, although it appears reasonable to stick
to the same decision once the equilibrium is reached, the standard deviation
stayed at a finite level. This was not only observed in “treatment” 1, where all
players knew only their own (previously experienced) payoff, but also in treat-
ment 2, where the payoffs P1(n1) and P2(n2) for both, 1- and 2-decisions, were
transmitted to all players (analogous to radio news). Nevertheless, treatment 2
could decrease the changing rate and increase the average payoffs (cf. Fig. 9).
For details regarding the statistical analysis see Ref. [113].

To explain the mysterious persistence in the changing behavior and explore
possibilities to suppress it, we have repeated these experiments with more iter-
ations and tested additional treatments. In the beginning, all treatments were



possibly relevant for

✤ Price taking behavior in financial markets
excess volatility 
(MM Challet Adv. Complex Sys. 3, 3-17 2001)
Regularization in portfolio optimization
(Caccioli, Still, MM, Kondor arxiv 2010)

✤ The beak of the finch 
(Weiner, The beak of the finch, Vintage books)

Darwin’s finches

Darwin’s finches

A. De Martino (CNR@Sapienza) Orsay – Sep 2010 4 / 19

Darwin’s finches

Darwin’s finches

A. De Martino (CNR@Sapienza) Orsay – Sep 2010 3 / 19



10 min break?



On the structure of 
preferences

• Background: 
Decentralized exploitation of resources by many agents
Structure of preferences and degree of rationality
Order-disorder transitions: Symmetry, luck and institutions

• Uncorrelated preferences
Identical agents/resources: Route choice game
Heterogeneous agents/resources: El Farol bar problem and Minority Game

• Aligned preferences
Parking in Marseille
A stylized model

• Conclusions



Darwin’s finches

Darwin’s finches

Weiner, The beak of the finch (Vintage Books)

A. De Martino (CNR@Sapienza) Orsay – Sep 2010 5 / 19

Darwin’s finches

Darwin’s finches

A. De Martino (CNR@Sapienza) Orsay – Sep 2010 3 / 19

To specialize or not to specialize, this is the problem

(courtesy of A. De Martino)

pure
strategy

mixed
strategy



The setting
• N agents                             P resources

adaptive agents = preferences + bounded rationality
noise = experimentation, environmental volatility, ...

• Question:

preferences

constraints
E.g. financial markets (speculators and information patterns),
     commodity markets (buyers and sellers),
     production economies (firms and goods’ markets),
     urban traffic (vehicles and streets),
     internet traffic (surfers and Internet),
     ecosystems (species and resources), ...

= F(        ,       , ...)collective
behavior

structure of
preferences

degree of
rationality

Order - disorder transition:
symmetric (mixed strat.)
asymmetric (pure strat.)

Identical/heterogeneous
agents and/or resources

Learning, memory,...



Uncorrelated or aligned 
preferences?

• Uncorrelated preferences: 
pure coordination

• Aligned preferences: 
coordination + competition

• Symmetric or asymmetric states?
phase transitions
social norms and institutions 
luck and property rights

(Helbing et al 2005)

ut
ili

ty

resources



How much rationality?

• Zero intelligence: agents as automata

• Naive agents: 
play against Nature (e.g. price taking behavior)

• Sophisticated agents: 
account for feedback of own actions on Nature

• Strategic agents (players) and common knowledge of 
rationality

IIIIIIIIII

1. types of self-organization and degrees of rationality
2. degree of complexity and learnability 



Uncorrelated preferences:
Identical agents/resources

• n agents, two actions: ai=±1, 
payoff: ui=-aiA,   A=Σj aj

• Symmetric NE: P{ai=+1}=1/2 for all i
Unique
Large fluctuations n+ - n- ~ sqrt(n)

• Asymmetric NE: ai=+1 for i<n/2; ai=-1 otherwise
Exponentially many (in n)
Small fluctuations n+ - n- ~ O(1)

• Naive reinforcement learning [A>0 → increase P{ai=-1}] 
converges to symmetric equilibrium

• + impact: A - εai>0 → increase P{ai=-1}
converges to asymmetric equilibrium for all ε>0

• Verified in experiments (Helbing et al. 2005)
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Uncorrelated preferences:
Heterogeneous agents/resources
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Naive agents → “mixed strategy” equilibrium:
- unique
- even exploitation of resources
- large fluctuations
- inefficient
- easy to learn

Sophisticated agents → pure strategy equilibrium:
- large degeneracy
- minimal fluctuations
- most efficient
- hard to learn in a “volatile world”

(Minority Game)

(Challet, MM, Zhang, Minority Game, OUP 2005)



Aligned preferences



Examples:
• Looking for a parking

• Securing a territory or nesting sites, or establishing 
pecking order in animal populations

• Settlements and colonies

• Users and printers/CPU

• ...

Agents access resources when needed (volatility)



Parking in Marseille
• Population of n agents either

• at home: going to work at rate η 

• at work: leaving the parking at rate 1

• n parking slots on one way street to office

• payoff for parking at s=1, ..., n: u(s) ↓ s

• Strategy: go up to spot k and then park in first empty spot

• if no empty slot found, payoff = - L 
(need to go all the way around to find parking)

(Kirman, Hanaki, MM, JEBO to appear)



Symmetric and asymmetric equilibria and luck

(Kirman, Hanaki, MM, Born under a lucky star? preprint @ IDEAS, to appear on JEBO)



A simpler model 
• n agents, n resources with exclusive use

• Agents on a resource leave it at rate 1

• Agents not on resource, look for a free resource at rate η 

• Strategy:
order s1, s2, ..., sn with which agents search for resources

• Payoff:
Resource s=1,...,n 
utility u(s) ↓ s if free
if occupied, agent pays cost c 
and needs to search further
ut

ili
ty

resources



Naive agents: symmetric equilibrium
(stationary state)

• i) agents know the probability pm that resource m is free

• ii) agents adopt mixed strategy: P{go to resource m}=gm

• R = number of occupied resources

pmWm[0→ 1] = (1− pm)Wm[1→ 0]
Wm[1→ 0] = 1
Wm[0→ 1] = (n−R)wm[0→ 1]

wm[0→ 1] = ηgm +




∑

m′ !=m

gm′
(1− pm′

)



wm[0→ 1]

=
ηgm

p̄ + (1− pm)gm
, p̄ =

∑

m

gmpm

P{R = r} =
(

n

r

)
ηr

(1 + η)n



Naive agents: II
• This gives pm as a function of gm

• Expected utility:

• Solve:

• Result: 

max
g,λ

{
E[u(g)]− λ

(
∑

m

gm − 1

)}

pm =
c− pu + λp̄2

p̄um − pu + c
, m ≤ m∗(λ∗)

= 1, m > m∗(λ∗)

um∗(λ∗) = λ∗p̄ + normalization → λ∗
m∗

m

m

pm

gm

E[u(g)] =
∑

m

gm {pmum + (1− pm) [E[u(g)]− c]}

=
pu− c(1− p̄)

p̄
, pu =

∑

m

gmpmum



Asymmetric NE
• Consider the equilibrium where agent i goes each time 

to resource i

• Is this a Nash equilibrium?

• Deviation: agent n tries to occupy resource 1: 
E[udeviation] = u(1)P{1 free} + (1-P{1 free})[u(n)-c] > u(n) 
if η > [u(1)-u(n)]/c

IIIIIIIIII
η

~ symmetric
equilibrium

totally asymmetric 
equilibrium?

[u(1)-u(n)]/c ~ O(n)η ~ O(n0)



Should agents remember 
where they came from?

• Agents have, in principle access to the information of past 
visited and attempted resources and the time elapsed

• If this information allows them to gain a higher payoff, 
wrt the symmetric equilibrium, it is evolutionarily 
advantageous to store it

• Consider the strategy mlast → g where agents first return 
to the last occupied site and, if this is occupied by 
another agent, play g

• Proposition: This strategy invades g



Example: 2 agents

2 Two agents and two resources

Suppose you have two agents and two renewable resources (call the resources 1 and 2). Suppose
moreover that the agents can be either at home or exploiting a resource. They leave home at
an exponential rate η and stop occupying a resource at another exponential rate 1.

Moreover they get benefit u1 and u2 from the two spots, but cannot exploit a resource if
it is already occupied by the other agent. If they find a resource occupied they pay a cost c.
We suppose that u1 > u2 > c.
Finally, and very important, they can observe each other only if they meet on a resource, i.e.
when an agent occupies a resource and the other agents arrives there and finds it occupied (as
we will see what is actually important is that the arriving agent sees that the spot is occupied).

So each agents, when leaving home, has two pieces of information: (i) which spot she left
and (ii) when (and where) did she last saw the other agents. A strategy will be a rule that,
whenever an agent leaves home, given the information set, assigns a permutation of 1 and 2.
This permutation will be the order in which the agents will search which one is free between
the two spots. In principle an agent could also decide not to visit one or both the resources,
but as we will see this is never the case.

Proposition 2.1. A Nash equilibrium of the two player game, where agents remember which
resource they last visited and when, is the following.
Call ∆ ≡ u1−u2

c . If ∆ < η then one of the two agents will always exploit resource 1, while the
other will always exploit resource 2.
If instead ∆ ≥ η there is a time τ > 0 such that both agents act according to the following
strategy:

a) if the last resource occupied was 1, then first try resource 1, if 1 is occupied go to 2;

b) if the last resource occupied was 2 then

1) if the other agent was last seen t < τ time ago, then return to resource 2;

2) if the other agent was last seen t ≥ τ time ago, then first try resource 1, if 1 is
occupied go to 2;

Proof: let us start from the case ∆ < η.
The two agents never see each others, so they assume that the spot they are not occupying is
free with probability 1

1+η (see Appendix A).
The agent occupying 1 has no incentive to deviate. If the agent occupying 2 deviates, she
receives a payoff

E[u] = p(1 is free )u1 + (1− p(1 is free ))(u2 − c)

=
1

1 + η
u1 +

η

1 + η
(u2 − c)

= u2 +
c

1 + η
(∆− η)

which is clearly less than u2 id ∆ < η. So the agent occupying 2 has no incentive to deviate
either.

Let us now consider the case ∆ ≥ η.
We will prove that a symmetric Nash equilibrium with the strategy described above exists, in

2

τ ≡ 1
1 + η

log
(

∆ +1
∆− η

)

Symmetric equilibrium with (temporarily) asymmetric allocation

Idea: P{1 free} =
1− e−(1+η)t

1 + η
↗ t



Generalizing to n agents

• Information:

• Compute

•     

qm
i (t) = P{m free|!i(t)}

If um − c/qm
i (t) > um′

− c/qm′

i (t) then m >i m′

3 N agents

There are N agents, i = 1, . . . , N , and M resources, m = 1, . . . ,M . We will assume N = M
but if M > N nothing changes. Payoffs are such that u1 > u2 > · · · > uN .

We consider (Nash) equilibria where the occupation of different resources are stationary.
Let pm be the stationary state probability that resource m is free. We shall assume that pm

is common knowledge (i.e. that agents will be able to learn it).
The information set of agents consists of i) the time tmi when resource m was last seen and

ii) the state zm
i in which it was left at that time. For example, for the site m∗ last visited by

agent i, zm∗
i = 0 and tm

∗
i is the time when agent i left it. For a site m which was found occupied

in a search attempt at time tmi , we set zm
i = 1. Given this information, the probability that

resource m is free at time t, given the information that agent i has at this time, is

qm
i (t) = pm

(
1− e−(t−tmi )/pm)

+ (1− zm
i ) e−(t−tmi )/pm

. (3)

This probability quantifies the belief that agent i holds on resource m being free.
A strategy s = (s1, s2, . . . , sM) is a permutation of the integers (1, 2, . . . ,M) which specifies

the order in which the agent will search for a free resource. If the first resource which is free
is the kth one, then the payoff associated to strategy s is usk

− (k − 1)c, where c is the cost
which the agent pays every time he/she aims at an occupied resource. Of course, the value of
k depends on the occupation of the resources, i.e. on the strategies played by other agents.

In principle defining a Nash equilibrium is a very complex task. We limit ourself to the
simpler problem of finding the optimal exploration strategy s that agent i should use, given
the information encoded in his beliefs qm

i . Consider the strategies s...m→n... and s...n→m... which
differ only because of the order in which two consecutive resources, in position k and k + 1,
are visited. In order to rank these two strategies, we need only consider all events where all
resources s! for ! < k are occupied. Indeed if any of these resources is free strategies s...m→n...

and s...n→m... yield the same payoff.
The condition under which strategy s...m→n... is better than s...n→m... can be written as

qm
i um + (1− qm

i ) [−c + qn
i un − (1− qn

i ) (−c + Π)] ≥ (4)
qn
i un + (1− qn

i ) [−c + qm
i um − (1− qn

i ) (−c + Π)] ,

where Π is the expected payoff of the continuation in search if both m and n are occupied.
Given that qm

i and qn
i are strictly positive, from (4) we obtain (omitting index i)

qmum + (1− qm) [−c + qnun] ≥ qnun + (1− qn) [−c + qmum]

(1− qn)c + qmqnum ≥ (1− qm)c + qmqnun

um −
1

qm
c ≥ un −

1

qn
c , (5)

which is equivalent to (4). The argument can be iterated to rank any strategy which differ
from each other by the exchange of the order of two resources. Since any permutation can be
generated in this way, it follows that

Proposition 1. The optimal search strategy is the one which ranks resources in order of de-
creasing um − c/qm

i .

4

Proof:

Proposition: qm
i (t) determines the optimal

search strategy of agent i at time t

!i(t) = {τm
i , zm

i },
τm
i ∈ R+ = time of last visit of i to m

zm
i ∈ {0, 1} = occupation of m at τm

i



Simulations
• A minimal implementation:

• Unconditional probability pm assumed common knowledge

• Linear utility: u(s) = n-s

• Measure of residence time of resource m
= average time spent by the same agent on resource m

• Simulations for t/n = 103, averages taken on last half period

qm
i (t) ≈ pm

(
1− e−(t−tm

i )/pm
)

+ (1− zm
i ) e−(t−tm

i )/pm



η=50

η=100

Localization for n « η
av
er
ag
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η=256

η=128

η=64

η=32

n=100, c=1

η=256

η=256

η=128

η=64

c=0.5

The safe middle property

Intuition: agents on lousy resources will risk looking for
other resources only if utility gain is large enough.
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Conclusions

• Different types of self-organization require different 
degrees of rationality

• Asymmetric states can be achieved when agents 
understand and account for their impact on “Nature”

• When preferences are aligned:

• Memory is evolutionarily advantageous, specially in 
crowded contexts

• Order nucleates from the middle



Thanks


