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1. Introduction

Food webs are networks of “who eats whom” in a particular geographical
location — for example an island, a lake, an estuary,...

Ecologists have for some time catalogued food webs by drawing graphs
where species are nodes and predator-prey interactions are the connecting
links (edges)

Most of the food webs documented early on were small, and the data
collected as a by-product of some other project

Food webs models were not formulated till much later...the first models
were either static (random graph model, cascade model) — postulating
certain types of web on the basis of one or two plausible rules, or had very
simple dynamics on a random graph
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Instead, to model food webs, we construct them from scratch using
biologically reasonable dynamics, rather than postulating a given graph
structure with no population dynamics, or defining a population dynamics
on a fixed graph

Two types of dynamics are required: (i) a “network dynamics”, which
gives rise to new species in the web (by speciation or immigration) and
eliminates them from the web (extinction), and (ii) a more conventional
population dynamics, which describes the interaction between individuals
when the number of species present in the community is fixed

We will first create species on a mainland, or metacommunity, purely
through speciation (with extinctions and population dynamics). Later we
can use these as a species pool to study immigration into islands, or local
communities

The networks that are constructed will be emergent — species are not
positioned in the network “by hand” and will change their links to increase
the resources available to them
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2. The Webworld model

To devise a model which enables us to “grow” a food web we introduce
three distinct time scales into the model:

On the longest time scale, new species are introduced. They are variants
of a randomly chosen species already in the system

On the intermediate time scale, the number of species is fixed, and the
dynamics is that of conventional population dynamics

On the shortest time scale, the populations of each species are fixed, but
the choice of diets of predators may change: species may alter their
feeding habits to take advantage of recent changes in population sizes

Before setting up the dynamics, need to introduce features which
characterise species, so that we can describe speciations
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Species are defined by choosing a set of L features out of a pool of K
possible features (in the simulations I will present here, L = 10 and
K = 500)

Features represent phenotypic and behavioural characteristics; the number
of features species have in common gives a measure of the similarity
between species

Example

Species 1 is defined through the features

{34, 75, 135, 176, 285, 324, 356, 432, 437, 476}

and Species 2 is defined through the features

{12, 75, 152, 178, 276, 298, 325, 337, 391, 439}

In this case only feature 75 is common.
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The measure of how useful a feature is for its carrier (at feeding on a
species carrying another feature) is assigned at the beginning of a run in
terms of an antisymmetric matrix mαβ (α, β = 1, . . . ,K )

In the standard version of the model the entries mαβ (α < β) are taken to
be Gaussian random variables with zero mean and unit variance, but many
other choices have been investigated, and have not significantly changed
the nature of the results

The effectiveness of the set of features belonging to species i , against the
set of those belonging to species j , gives a measure of how well i is
adapted for predation on j and is given by the score

Sij = max

0,
1

L

∑
α∈i

∑
β∈j

mαβ


The score matrix will appear in the equations describing the population
dynamics
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Dynamics

Evolutionary dynamics (network dynamics)

At each evolutionary time step a speciation occurs: a species is randomly
chosen, and one of its features is randomly replaced by another

The population of the parent species is reduced by 1 and the new species
is introduced into the community with a population of 1

The population dynamics (discussed below) is applied to the new
community, and new population densities calculated

If the population density of any species falls below 1 during this period it is
eliminated (extinction)

Choices made above relating to the way species are chosen, number of
new species introduced into the community, thresholds for extinction,...do
not significantly change the nature of the results obtained
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Population dynamics

The governing equation for the population dynamics is taken to be

dNi (t)

dt
= λ

∑
j

Ni (t)gij(t)−
∑

j

Nj(t)gji (t)− diNi (t)

• The term
∑

j Nj(t)gji (t) represents the loss from predation by species j
on species i . The quantity gij(t) is the functional response — which is the
rate at which an individual of species i feeds on species j

• The term λ
∑

j Ni (t)gij(t) represents the gain from predation by species
i on species j . Here λ is the ecological efficiency at which consumed prey
is converted into predator offspring

• Finally, di is the death rate, which we assume to be equal to 1 for all
species
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It only remains to model the functional response. This is done in as
realistic a way as possible.

Let’s recall some of the forms proposed for a single predator P and single
victim V :

g(P,V ) = aV (linear functional response)

g(P,V ) =
a1V

1 + a2V
(Holling)

g(P,V ) =
a1V

1 + a2V + a3P
(Beddington)

g(P,V ) =
a1V

a2V + a3P
(ratio− dependence)
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So, going back to our previous notation, for a single predator i feeding on
a single prey j :

gij(t) =
SijNj(t)

bNj(t) + SijNi (t)

If there are several species preying on j :

gij(t) =
SijNj(t)

bNj(t) +
∑

k αkiSkjNk(t)

where αki = c + (1− c)qki (0 ≤ c ≤ 1)

If predators have more than one prey as well:

gij(t) =
Sij fij(t)Nj(t)

bNj(t) +
∑

k αkiSkj fkj(t)Nk(t)

where the “efforts” satisfy

fij(t) =
gij(t)∑
k gik(t)

Alan McKane (Manchester) Evolving complex food webs Trieste, October 24, 2010 12 / 28



3. Examples of Constructed Webs
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4. Results

Many simulations were performed, each with

• different random matrices for the scores of features against each other

• different random feature sets for the environment

Each run was for 100,000 evolutionary time steps, except when very large
webs were created, when the model was run for 200,000 evolutionary time
steps

Main parameters of the model:
R: Total resources
c : Competition parameter (0 ≤ c ≤ 1)
λ: Ecological efficiency (= 0.1)
b: Saturation level of gij
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Two different runs
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Mean number of species versus input of resources over many runs with the
same set of parameters

c = 0.5, b = 0.005, λ = 0.1
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R = 105 b = 0.005 λ = 0.1
c = 0.8 c = 0.6 c = 0.4

no. species 27 55 79
links per species 1.68 1.70 2.33

average level 2.15 2.28 2.38
av. max level 4.0 3.91 3.69
B species (%) 12 9 8
I species (%) 86 90 90
T species (%) 2 1 2

c = 0.5 b = 0.005 λ = 0.1
R = 104 R = 105 R = 105.54

no. species 33 57 82
links per species 1.76 1.91 1.91

average level 1.95 2.35 2.65
av. max level 3.0 3.9 4.0
B species (%) 18 9 5
I species (%) 80 89 89
T species (%) 2 2 6
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Time evolution of a single ecosystem
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Dashed lines are at times 100, 500, 1000 and 10000

Simulation had parameters R = 1× 105, b = 0.005, c = 0.5 and λ = 0.1
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Food webs produced in the previous simulation sampled at times 100, 500,
1000 and 10000
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Other aspects of the model which have been investigated:

• Web structure obtained using other forms of functional response
(Lotka-Volterra, Holling, Beddington, Arditi-Michalski). A large proportion
of weak links result naturally from the evolution of food webs [J. Theor.
Biol. 229, 539–548 (2004)]

• Distribution of interaction strengths in the evolved web — is this skewed
towards weak links? [Ecol. Modelling 187, 389–412 (2005)]

• Stability of model ecosystem to removal and addition of species. No
evidence that complexity, in terms of increased species number or links per
species, is destabilising [Oikos 110, 283–296 (2005)]

• Robustness of the model to changes in its structure, by changing the
nature of species interactions and thresholds such as the number of
individuals of a species required to be present before that species is said to
be extinct. We found that the model was remarkably robust to such
changes [Ecol. Complexity 5, 106–120 (2008)]
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• Does making the model more complex led to a richer set of predictions,
or if it is made simpler, can contact be made with even simpler models,
which could be studied analytically. There is essentially a whole class of
food web models, which are related to the original, which give broadly
similar results, and which run from the relatively simple to the quite
complex [Jour. Theor. Biol. 252, 649–661 (2008)]

• Measured the species abundance distribution. Seems to be the first time
that this has been measured in a non-trivial model with several trophic
levels. We found that the power-law normal distribution was a better fit to
the form of the distribution than was the conventional log-normal [Jour.
Theor. Biol. 255, 387–395 (2008)]

• Unified the evolutionary approach to foodweb modelling discussed
above, with an alternative modelling procedure: assembly models. So now
immigration, as well speciation, is the mechanism for the introduction of
new species and hence for the construction of ecological communities.
Allows for test of species-area relation [Ecol. Complexity 6, 316–327
(2009)]
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5. Conclusions

The dynamical model of food web evolution described here covers time
scales from the very short (e.g. changing foraging strategies) to the very
long (e.g. when evolutionary dynamics reaches a state where the number
of originations and the number of extinctions balance on average)

The networks that are formed are truly emergent, with species finding
their own niche within the web and continually changing their foraging
strategies to maximise their gain in resources

Results are intuitively appealing and in broad agreement with food web
data from real ecosystems. They are also robust to changes in various
parameters in the model

The approach can be extended to include immigration by evolving a
mainland which can be used as a species pool for constructing island
communities
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