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-- from individuals to ecosystems 



1) Climate change 

2) Changing productivity 

Behrenfeld et al. 2007 

Worm et al, Science (2009) 

3) Fishing 

FAO: the state of the world fisheries (2008) 



1) Structure of the fish community (+ some more) 
2) Response of the fish community to fishing 







“The most obvious differences between different animals are differences of 
size...” (Haldane, 1928) 
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8 orders of magnitude 



Sheldon & Parsons (1967): Sheldon et al (1972): 

Sheldons conjecture: 

The biomass in 
logarithmically spaced size 
groups is constant 
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Shakespeare (≈1607) 

Jennings et al., JAE, 2001 

Breughel the elder, 1556 
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1) Big fish eat smaller fish 
2) Search rate proportional to size 

Search volume ∝ wq    2/3 < q < 1 

4) encountered food = consumed food = h wn 

N(w) 

3) Scaling size spectrum: N = Kcw-λ 

Encountered food 

φ 
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Rodriguez and Mullin, LO, 1986 

Boudreu and Dickie, CJFAS, 1992 

-0.05 



1 mg 

25 kg 

3 kg 



growth	
  

size	
  

A
bu

nd
an
ce
	
  



0 10 20 30 age (years) 

weight (kg) 

2 
4 
6 
8 
10 

Asymptotic size W∞ 

k large  ↓ 

k small ↑ 



Asymptotic weight 

In
ve

st
m

en
t 

in
 r

ep
ro

d
u
ct

io
n
 

Data from Gundersen, CJFAS, 1997 
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Physiological rate of 
predation: mortality/
(growth/weight) 
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Andersen & Beyer: Am. Nat. (168) 54-61 (2006) 
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Sheldon hypothesis: 
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Extended 

Sheldon hypothesis: 



Red line calculated assuming that the lower range of fish caught was 10 cm 

data from Daan et al, JMS (2003) 
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1)               small eggs are optimal 

2)              i.e. a growing function 

3)           at some small size => lower 
limit 

4)                  => no upper limit 

Andersen et al., Theo. Pop. Biol. (2008) 



1) Why are there small fish species? 
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Andersen & Beyer: Am. Nat. (168) 54-61 (2006) 



1) Why are there small fish? 

2) Why are there not any larger fish? 



consumption ∝ w3/4 

heat loss ∝  w2/3 
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1) Why are there small fish? 

2) Why are there not any larger fish? 

3) Why are there not fish-like life-histories on land? 
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heat loss ∝  w2/3 
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1) Why are there small fish? 

2) Why are there not any larger fish? 

3) Why are there not fish-like life-histories on land? 

4) Could there be fish-like life-histories on land? 



Starting from a basic “metabolic” assumption: 
consumption w3/4: 

•  Exponent of size spectrum is -2-q+n ≈ -2 

•  Main trait: asymptotic size 
•  Population structure can be solved analytically 
•  Many-small-eggs strategy is optimal 
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In the beginning there was Beverton & Holt ... 
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Typical results: one-two small fish, one large fish 



Hartvig et al, arXiv:1004.4138v1 



Size at maturation Size at maturation 

Hartvig et al, arXiv:1004.4138v1 
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1)  Fishing large fish 
2)  Fishing on the whole ecosystem 
3)  Fishing forage fish 
4)  Recovery from fishing 
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⇒  Two-way trophic cascades 

⇒  Cascades are damped 

⇒  Fishing on all life histories removes cascades 
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Base case: a heavily fished ecosystem (e.g. the North Sea) 
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Andersen and Rice, ICES JMS (2010) 

recovery of  
medium species 

recovery of  
large species 

recovery of  
small species 
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Trophic level (size) 

Predation: Intensify cascade 

Ontogenetic trophic transfer: 
Dampen cascade 



Estes et al, Science (1998) 
North-west Atlantic 

Frank et al (2005) 

Cod biomass 
decreased by  

a factor 2 

Large 
zooplankton 
decreased 

by a 30 % 



Ontogenetic 
trophic niche shift 

105 g 10-4 g 
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food-web model 

Benoît & Rochet, JTB (2004) 

Law et al, Ecology (2009) 

Andersen & Beyer, Am Nat (2006) 

Andersen & Pedersen, PRSLB (2009) 

Hartvig et al, arXiv (2010) 

Blanchard et al. 



• Dinosaur community ≈ fish community 
• Which are the governing traits, and what are the trade-

offs? 





• Dinosaur community ≈ fish community 
• Which are the governing traits, and what are the trade-

offs? 
• Which models shall we use for Ecosystem Approach to 

Fisheries Management? 
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• Dinosaur community ≈ fish community 
• Which are the governing traits, and what are the trade-

offs? 
• Which models shall we use for Ecosystem Approach to 

Fisheries Management? 
• The fish community has local control 
• Simple fish communities has one-two small species and 

one large species 
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