Constraints and optimal behaviour in plankton and fish

Øyvind Fiksen University of Bergen Norway

http://www.bio.uib.no/modelling/pages/publications.php

Outline

- The Holling disk equation
 - Phytoplankton
 - Fish
- Some applications and lessons from a simple mechanistic model
- Optimal behaviour and dynamic programming
 - Daphnia in experiments
 - Larval fish and food abundance
 - Planktovore fish in hypoxia

The Holling disk equation (Holling type II)

The predator has two alternative activities, *searching* or *handling*:

 $T = t_s + t_h$

Time spent handling prey:

 $t_h = P_e T_h$

 $P_{e} = aNt_{s}$

Number of prey encountered in *t*:

a: search rate $[m^3 \text{ predator}^{-1} \text{ sec}^{-1}]$ *N*: prey density [prey m⁻³] T_h : handling time of one prey [sec prey⁻¹] P_e : prey encountered while searching [prey predator⁻¹] *t*: time spent on various activities [sec predator⁻¹]

Time available to search for prey:

We want an expression for *feeding rate* P_e/T as a function of prey density *N*:

The Holling disk equation:

 $P_e = aNt_s \Leftrightarrow$ $t_s = \frac{P_e}{aN}$ $T = t_h + t_s = P_e T_h + \frac{P_e}{aN} =$ $P_e (T_h + \frac{1}{aN}) = P_e (\frac{T_h aN + 1}{aN})$ $\frac{T}{P_e} = \frac{T_h a N + 1}{a N} \Leftrightarrow$ $\frac{P_e}{P_e} = \frac{a N}{a N} \Leftrightarrow$ \overline{T} 1+ T_haN $=\frac{aNT}{1+T_{h}aN}$ P_{e} www.uib.no

Phytoplankton

Mechanisms of nutrient uptake in osmotrophs

Holling disk model for nutrient uptake

Nutrient encounters at one site:

What determines detection distance R in fish?

Light, vision, encounters, and predation

Fiksen Ø, Aksnes DL, Flyum MH, Giske J. 2002. *Hydrobiologia*, **484**: 49-59.

Fish foraging, depth and turbidity

Zooplankton mortality, phytoplankton and water type

Prey distribution and fish foraging efficiency

Particulate visual feeding

Prey detection distance

Seasonal irradiance & daylength

Conclusion

Varpe Ø & Fiksen Ø 2010 Seasonal plankton-fish interactions: light regime, prey phenology, and herring foraging. Ecology 91:311-318

Light Controls Predation and Marine Food Web Structure

Dag L. Aksnes University of Bergen Norway

Light dependent behavior in a mesopelagic fish (*Maurolicus muelleri*)

Baliño & Aksnes, 1993

Mass Abundance of Jellies (>1000 g m⁻²)

Periphylla periphylla

Light extinction in two different fjords

Lurefjorden

Masfjorden

Wavelenght

Observations made 10/10 2006 by Stein Kaartvedt

Fish or Jellies – a question of visibility? Eiane et al. (1999), Limnol. Oceanogr.

Fish-fjord

Jelly-fjord

Zooplankton is more abundant in the jelly-fjord (and larger in size)

Table 1. Biomass (mg C m⁻³) of zooplankton, mesopelagic fish (*M. muelleri* and *B. glaciale*), and *P. periphylla* (modified from Salvanes et al. 1995).

	Mesopelagic fish					
	Zooplankton		Au-		P. periphylla	
	Autumn	Spring	tumn	Spring	Autumn	Spring
Masfjorden Lurefjorden	3.92 31.60	2.66 7.92	1.32 0.00	2.63 0.00	0.00 10.4	0.00 26.4

Eiane et al 1999

Visual Feeding Rate at Depth z

$$f = \frac{h^{-1}N}{(h\pi(r\sin\theta)^2 v)^{-1} + N}$$

N**Prey density** Handling time h **Cruising speed** V **Reaction field half angle** θ

Visual Range $r^2 e^{cr} = |C| A V \frac{E}{K + E}$

 $E = E_0 e^{-kz}$

Light Level

Background light level E Light saturation parameter K **Prey size** A C **Prey inherent contrast** V**Visual capacity**

k

Z

Surface light level E **Light attenutation** Depth

Feeding rate integrated for a light limited water column

Assumption 1: Prey density is low

Assumption 2: Light intensity is low

Integration leads to:

$$F = A\frac{1}{k} + B$$

12 Fjords on the Norwegian West Coast were sampled Halsafjorden Trondheimsfjorden Førdefjorden Sogndalsfjorden Sognefjorden Masfjorden Lurefjorden Herdlefjorden Korsfjorden Hardangerfjorden Jøsenfjorden Lysefjorden

Planktivorous fish versus light extinction in the Black Sea

B = (146/k) - 185 $r^2 = 0.66$ $P < 10^{-7}$ Fish data: Black Sea sprat and anchovy biomass (Prodanov *et al* 1997 and FAO fishery statistics)

Light extinction: Data are transformed ($k = 1.7/Z_w$) Secchi-disc measurements (Z_w) that are annually and spatially integrated for the Black Sea. (Vladimirov *et al* 1997)

Aksnes & al. 2004; Aksnes 2007

Optimal behaviour – some examples using stochastic dynamic programming

Environment

- Optimization requires that fitness can be described by a fixed function
 - A constant environment
 - A stochastic environment with constant variability
 - A repetitive seasonal environment
 - A repetitive seasonal environment with years drawn from a distribution with constant variability

An experiment with Daphnia magna

Optimal habitat selection and allocation of energy

 \Leftrightarrow

ALVERSTARS REFERENCE

The dynamic programming equation

Maximise fitness = find the behavioural and life history decision that maximises (current + expected future reproduction)

$$\Phi(w,t=T)=0$$

Fitness (size, time)

$$\Phi(w,t) =$$

Survival Eggs Future fitness (new state, next time) $\max_{z,\alpha} P_s(w,z) \{ R(w,z,\alpha) + \Phi[w'(w,z,\alpha),t+1] \}$

Computer pseudo-code

Program SDP

DEFINE TERMINAL FITNESS(STATE, HORIZON)

DO TIME FROM HORIZON-1 TO 1 IN STEPS OF -1

DO STATE = MINSTATE, MAXSTATE DO HABITAT = 1,N_HABITATS DO ALLOCATION = 1, N_ALLOCATION

> Find NEW_STATE(HABITAT, ALLOCATION) Find REPRODUCTION(HABITAT, ALLOCATION) Find SURVIVAL(HABITAT, ALLOCATION)

Loops

State dynamics (physiology) & ecological mechanics

Find FITNESS=SURVIVAL*[FITNESS(NEW_STATE,TIME+1) + REPRODUCTION]

IF(FITNESS>MAX_FITNESS) THEN STORE HABITAT*(STATE,TIME) STORE ALLOCATION*(STATE,TIME) ENDIF

Evaluate consequences of actions in terms of fitness – save best

ENDDO ALLOCATION ENDDO HABITAT MAX_FITNESS=0 ENDDO STATE ENDDO TIME

Optimal behaviour and life history

Optimal strategy depending on environment, body mass, time and implicitly, expectations of future conditions

$$z^*(w,t) \qquad \alpha^*(w,t)$$

These matrixes of the best strategy can be applied in forward projections with IBMs or state-structured population models

Optimal depth selection: data and model

Larval feeding and growth depend on both depth and activity

Sprat in the Baltic

Prey density and recruitment success

Prey density and recruitment success

Fish deep in debt: Fish behaviour in hypoxic gradients

Øyvind Fiksen¹, C. Jørgensen¹

M. Burrows², G. Claireaux³, P. Domenici⁴, J.F. Steffensen⁵ and S. Kaartvedt⁶

Energy and oxygen in bioenergetics

Risk and foraging

Optimal behaviour and states

Water clarity and fitness

Take home

- Mechanistic models
 - make trade-offs apparent
 - drive or guide experimental work
 - are useful to make sense of observations
- Optimality models
 - make clear predictions
 - suggests solutions to trade-offs
 - are particularly useful under state-dependence

www.bio.uib.no/modelling