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Geolocation:
Where did the fish go?
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Hunter et al (2003), Metcalfe & Arnold (1997)



Reconstructed trajectories
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A Hidden Markov Model combing diffusive fish motion and noisy
observations.

Pedersen et al (2008), Thygesen et al (2009)



Stochastics supports statistics



Stochastic fluctuations do not
always just average out



Turbulence and eddy diffusion:
Eulerian vs. Lagrangian models

Thygesen et al, 2007



Birth-death processes

Let the abundance Nt be a Markov process with transitions

n→ n + 1 with rate λn
n→ n − 1 with rate µn

Then the expected abundance evolves according to

d
dt

ENt = (λ− µ)ENt



Density dependence

dxt

dt
= (λ− µ1 · xt)xt

How will the birth-death process behave near the carrying capacity
K = λ/µ1?



A diffusion approximation

Continuous, linearized, approximation when Nt is large:

C(x , t) is the probability density of finding the system near state x at
time t .

∂C
∂t

= − ∂

∂x
(uC − λ∂C

∂x
)

with “advection field” u(x) = µ1 · (K − x).

Use the theory of noise propagation in linear systems!



Fluctuations and dissipation

The birth/death process will fluctuate around K with the dissipative
time scale

1
λ

The variance of fluctuations is

VNt =
λ

µ1
= K

Square root scaling between abundance K and root mean square
fluctuations.

For large populations K , fluctuations are relatively small.



Demographic noise:
Probability of extinction

P(N∞ = 0|N0 = n) = min{1,
(µ
λ

)n
}

I 1/µ is the expected life span of an individual.
I λ/µ is the fitness F : The expected number of offspring.

I If F ≤ 1, then extinction is inevitable.
I If F > 1, then the probability of extinction is 1/F .

Adaptive dynamics: Mutants arise randomly; birth-death processes
determine if they go extinct.



Random Behavior

Animal behaviour is unpredictable:

I Unknown cues
I Unknown internal state
I Unknown behavioral strategy

I Sometimes it is optimal to be unpredictable.



The Hawk-Dove game

Two conspecifics are competing for a value V .
Each may behave agressively (hawk) or passively (dove).
If two hawks fight, the looser suffers a wound W > V .

Payoff matrix:

H D
H V/2−W/2 V
D 0 V/2

The optimal strategy (Nash, ESS) is to act randomly:

With probability V/W , be a hawk.

Maynard Smith (1982)



The adaptive dynamics

The population is characterized by a trait p: The probability of being a
hawk.

A mutant with trait q arises.

Does it invade?

Its expected payoff is

q(
v
2
− w

2
)p + qv(1− p) + (1− q)0p + (1− q)

v
2
(1− p)



Pairwise invasibility plot
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Pairwise invasibility plot (PIP): The invasion fitness

Resident’s strategy
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Fluctuating environments

Nt+1 = Ft · Nt

where Ft is a stochastic process with mean f and variance σ2.

V{Nt + 1|Nt = n} = σ2n2

I.e., linear scaling between abundance and root mean square variance.

Note: Your expected number of descendants is 〈Ft〉 but the population
will persist if 〈log Ft〉 > 0. If 〈Ft〉 = 1, variance will kill you!



Brownian bugs

Given a collection of bugs distributed in space.
At each time step, let each bug:

I die
I clone
I move

with a specified probability.

Young et al (2001)



Initial distribution
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Final distribution
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Temporal evolution of spatial
statistics
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Temporal evolution of spatial
density
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Conclusions

I Stochastic models supports statistic analysis.
I Individual-level processes are unpredictable
I ... and may be modeled with stochastic processes
I Diffusion approximations are everywhere!
I Unpredictability may be an advantage
I Density dependence dampens fluctuations
I ... but neutral situations are common


