Stochastic methods in ecosystem modeling

Uffe Høgsbro Thygesen

Trieste, October 2010

Geolocation: Where did the fish go?

Reconstructed trajectories

A Hidden Markov Model combing diffusive fish motion and noisy observations.

Stochastics supports statistics

Stochastic fluctuations do not

always just average out

Turbulence and eddy diffusion: Eulerian vs. Lagrangian models

Birth-death processes

Let the abundance N_t be a Markov process with transitions

$$n \rightarrow n + 1$$
 with rate λn
 $n \rightarrow n - 1$ with rate μn

Then the expected abundance evolves according to

$$\frac{d}{dt}$$
E $N_t = (\lambda - \mu)$ E N_t

Density dependence

$$\frac{dx_t}{dt} = (\lambda - \mu_1 \cdot x_t) x_t$$

How will the birth-death process behave near the carrying capacity $K = \lambda/\mu_1$?

A diffusion approximation

Continuous, linearized, approximation when N_t is large:

C(x,t) is the probability density of finding the system near state x at time t.

$$\frac{\partial C}{\partial t} = -\frac{\partial}{\partial x} (uC - \lambda \frac{\partial C}{\partial x})$$

with "advection field" $u(x) = \mu_1 \cdot (K - x)$.

Use the theory of noise propagation in linear systems!

Fluctuations and dissipation

The birth/death process will **fluctuate** around K with the **dissipative** time scale

 $\frac{1}{\lambda}$

The variance of fluctuations is

$$\mathbf{V}N_t = \frac{\lambda}{\mu_1} = K$$

Square root scaling between abundance *K* and root mean square fluctuations.

For large populations K, fluctuations are relatively small.

Demographic noise: Probability of extinction

$$\mathbf{P}(N_{\infty} = 0 | N_0 = n) = \min\{1, \left(\frac{\mu}{\lambda}\right)^n\}$$

- ▶ $1/\mu$ is the *expected life span* of an individual.
- λ/μ is the *fitness F*: The expected number of offspring.
- ▶ If F < 1, then extinction is inevitable.
- ▶ If F > 1, then the probability of extinction is 1/F.

Adaptive dynamics: Mutants arise randomly; birth-death processes determine if they go extinct.

Random Behavior

Animal behaviour is unpredictable:

- ▶ Unknown cues
- Unknown internal state
- Unknown behavioral strategy
- ► Sometimes it is *optimal* to be unpredictable.

The Hawk-Dove game

Two conspecifics are competing for a value V. Each may behave agressively (hawk) or passively (dove). If two hawks fight, the looser suffers a wound W > V.

Payoff matrix:

	Н	D
Н	V/2 - W/2	V
D	0	V/2

The optimal strategy (Nash, ESS) is to act randomly:

With probability V/W, be a hawk.

Maynard Smith (1982)

The adaptive dynamics

The population is characterized by a trait p: The probability of being a hawk.

A mutant with trait q arises.

Does it invade?

Its expected payoff is

$$q(\frac{v}{2} - \frac{w}{2})p + qv(1-p) + (1-q)0p + (1-q)\frac{v}{2}(1-p)$$

Pairwise invasibility plot

Fluctuating environments

$$N_{t+1} = F_t \cdot N_t$$

where F_t is a stochastic process with mean f and variance σ^2 .

$$\mathbf{V}\{N_t+1|N_t=n\}=\sigma^2n^2$$

I.e., linear scaling between abundance and root mean square variance.

Note: Your expected number of descendants is $\langle F_t \rangle$ but the population will persist if $\langle \log F_t \rangle > 0$. If $\langle F_t \rangle = 1$, variance will kill you!

Brownian bugs

Given a collection of bugs distributed in space. At each time step, let each bug:

- ▶ die
- clone
- move

with a specified probability.

Young et al (2001)

Initial distribution

Final distribution

Temporal evolution of spatial statistics

Temporal evolution of spatial density

Conclusions

- Stochastic models supports statistic analysis.
- Individual-level processes are unpredictable
- ... and may be modeled with stochastic processes
- Diffusion approximations are everywhere!
- Unpredictability may be an advantage
- Density dependence dampens fluctuations
- ... but neutral situations are common