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Overview

• What we want to do in the end
• Standardization methods
• How to implement the k0-method

• Gamma-ray spectrometry
• Detector characterization (Monday afternoon)

• Coincidence-summing based detector calibration
• Advanced topic I (Tuesday morning)
• Advanced topic II (Tuesday morning)

• Irradiation facility characterization (Tuesday afternoon)
• The interpretation step
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What we want to do in the end

• The measure peak area a is linearly proportional to the 
elemental concentration c. The proportionality constant is m.
• c is what we want to know, a is what we measure, m is what 
we get from the calibration and/or standardization process.
• So we want to determine m first, and then analyze samples
• m is the peak area that would be measured if the elemental 
concentration was 1 kg/kg

a mc=
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How to calculate m
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where w is the sample mass, θ the isotopic 
abundance, M the molar mass of the element, λ the 
decay constant, R the activation rate, and tir, td and 
tm the irradiation, decay and measurement durations. 
P is the probability per disintegration of obtaining a 
count in the full-energy peak.
(This equation is only valid for the simplest activation case)
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How to calculate R and P

• The activation rate R is calculated from the neutron 
spectrum shape parameters (Φs, Φe, α, T) and the 
capture cross-section parameters (σ, I0, Er, g(T)).

• The detection probability P is calculated from the 
detector’s efficiency curves (full-energy and peak-to-
total), the counting geometry and the decay scheme of 
the radionuclide.
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Principles of the k0 method
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First conventional approach: adapted Høgdahl
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Principles of the k0 method
First conventional approach: adapted Høgdahl
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Principles of the k0 method
Second conventional approach: Westcott

Takes non 1/v (n,γ) reactions into account using g(T).
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Principles of the k0-IAEA software
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Adapted2 Høgdahl conventional approach: Blaauw
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Principles of the k0-IAEA software
Adapted2 Høgdahl conventional approach: Blaauw
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Principles of the k0-IAEA software
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The k0 method and the k0-IAEA software
Relations between standard k0 and k0-IAEA parameters
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How to implement the k0 method

• 1- Characterize the detector first
• find or determine the detector dimensions
• measure peak-to-total ratio curve
• measure full-energy efficiency curve
• measure escape ratio curves (k0-IAEA)

• 2- Characterize the irradiation facility second
• determine T, f and α (and the fast flux)
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How to implement the k0 method
- irradiation facility characterization

• determine T, f and α (and the fast flux)
• use a suitable mix of elements, some with low Q0, 

some with high Q0, with various Er’s, some showing 
(n,p) or other threshold reactions, some being non- 1/v

• for example: Zr, Au, Ni, Lu.
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The trouble with the standard methods

• Cd-cover-method takes two samples of identical, 
complex composition - that’s one too many.

• Bare triple-comparator method can only yield three 
parameters, we need five

• Adding Lu and e.g. Ni to the standard combination of 
Zr-Au seems a good option

• But foils and wires in one capsule are hard to count 
together (efficiency, decay, shielding)

• 97Zr appear to be too extreme in its behavior, and not 
representative for the other high-Q nuclides
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Possible alternatives

• Existing materials
• available alloys that happen to be suitable
• reference materials
• SMELS

• Homemade mixtures
• ground and mixed powders 
• solutions of suitable composition, pipetted on filter 

paper
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An existing alloy



Trieste, Nov 8-10, 2010

NIST Montana soil
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Home-made ground and mixed 
powders

• Too risky because of segregation
• To be tried only by experienced, trained, professional 

reference-material makers
• Don’t even think of trying this at home!
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Home-made solutions pipetted on 
filter paper

Delft - Sao Paolo example
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Alternative methods for
Thermal and Epithermal Flux 
Monitoring

Anneke Koster-Ammerlaan, Marcio Bacchi,
Peter Bode, Elisabete A.De Nadai Fernandes
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Thermal and Epithermal Flux 
Monitoring
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Poor reproducibility of f and α in consecutive 
irradiations under stable reactor conditions:

1st series (n=5) 2nd series (n=5)

f 50 - 63 64 - 90

α 0,07 - 0,11 0,02 - 0,08

Temporarily solved at IRI by choosing α = 0.10 
and calculating the corresponding f values

Thermal and Epithermal Flux Monitoring
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Thermal and Epithermal Flux 
Monitoring
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Thermal and Epithermal Flux Monitoring

Conclusions:

• Metrology requires to determine spectrum parameters 
in every irradiation for every position inside the rabbit.
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Thermal and Epithermal Flux 
Monitoring

Cd-covered Zr-Au method:
• Inapplicable due to thermal heating of Cd with a 

serious risk of damage to the plastic irradiation 
container.

• Inapplicable due to flux depressions in the real 
samples
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Thermal and Epithermal Flux Monitoring

Bare triple method (Zr-Au):
• Poor counting statistics for 97Zr under routine INAA 

conditions (tirr: 1-4 h, td: 3-5 days, tc: 1-4 h)
• Strong influence of counting statistics
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Thermal and Epithermal Flux 
Monitoring
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Thermal and Epithermal Flux Monitoring

Search for alternative pairs of flux and spectrum monitors
Needed:
• High Q0, low Er + High Q0, high Er

• High σ0

• No spectral interferences; minimal coincidence 
summing

• Easy to prepare in large batches
• t1/2 > 1 d



Trieste, Nov 8-10, 2010

Thermal and Epithermal Flux 
Monitoring

Epithermal flux 
can be neglected 
if f>50
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Thermal and Epithermal Flux 
Monitoring
Alternative set of 

monitors:
51Cr, 99Mo, 198Au
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Thermal and Epithermal Flux 
Monitoring

•Cd-covered Zr-Au-monitor 
•Cr, Mo, Au monitor
•Zr, Au-monitor

Irradiation time: 30 minutes 
(2 separate irradiations)
Decay time:       4 days
Counting time: 2 hours
Detector: 35 % Ge-detector

Verification in pool-side facility and Al-containers
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Thermal and Epithermal Flux 
Monitoring
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Thermal and Epithermal Flux 
Monitoring

 Activity 
uncertainty 

(%) 
51Cr 0.7 
99Mo 2.0 
198Au 1.1 
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Thermal and Epithermal Flux 
Monitoring
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Thermal and Epithermal Flux 
Monitoring

Characterization of pneumatic facility

5 Cr, Mo, Au-monitors

Irradiation time: 1 hour
Decay time:       4 days
Counting time:   1 hours
Detector: 35 % Ge-detector
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Thermal and Epithermal Flux 
Monitoring
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Thermal and Epithermal Flux 
Monitoring

Conclusions:

• The Mo, Au, Cr- monitor is the solution for spatial f
and α monitoring

• The monitor is easy to prepare in large batches
• The monitor will be used in routine INAA


