

2172-11

Joint ICTP-IAEA Workshop on Nuclear Data for Science and Technology: Analytical Applications

8 - 12 November 2010

The k0-Method of Instrumental Neutron Activation Analysis Irradiation Facility Characterization

Menno BLAAUW Technical University of Delft, Neutrons & Moessbauer Department, Mekelweg 15 2629 JB Delft THE NETHERLANDS

The k₀-method of Instrumental Neutron activation analysis

Irradiation facility characterization

Trieste, Nov 8-10, 2010

Delft University of Technology

Overview

- What we want to do in the end
- Standardization methods
- How to implement the k₀-method
 - Gamma-ray spectrometry
 - Detector characterization (Monday afternoon)
 - Coincidence-summing based detector calibration
 - Advanced topic I (Tuesday morning)
 - Advanced topic II (Tuesday morning)
 - Irradiation facility characterization (Tuesday afternoon)
- The interpretation step

What we want to do in the end

- The measure peak area *a* is linearly proportional to the elemental concentration *c*. The proportionality constant is *m*.
- *c* is what we want to know, *a* is what we measure, *m* is what we get from the calibration and/or standardization process.
- So we want to determine *m* first, and then analyze samples
- *m* is the peak area that would be measured if the elemental concentration was 1 kg/kg

How to calculate *m*

$$m = \frac{w\theta N_{avogadro}}{M} R \frac{\left(1 - e^{-\lambda t_{ir}}\right)}{\lambda} e^{-\lambda t_d} \left(1 - e^{-\lambda t_m}\right) P$$

where w is the sample mass, θ the isotopic abundance, M the molar mass of the element, λ the decay constant, R the activation rate, and t_{ir} , t_d and t_m the irradiation, decay and measurement durations. P is the probability per disintegration of obtaining a count in the full-energy peak.

(This equation is only valid for the simplest activation case)

How to calculate R and P

- The activation rate R is calculated from the neutron spectrum shape parameters (Φ_s , Φ_e , α , T) and the capture cross-section parameters (σ , I_0 , E_r , g(T)).
- The detection probability *P* is calculated from the detector's efficiency curves (full-energy and peak-tototal), the counting geometry and the decay scheme of the radionuclide.

Principles of the k₀ method

First conventional approach: adapted Høgdahl

$$R = \int_{0}^{v_{Cd}} \sigma(v) \Phi(v) dv + \int_{v_{Cd}}^{\infty} \sigma(v) \Phi(v) dv \approx$$
$$\int_{0}^{v_{Cd}} \frac{\sigma_0 v_0}{v} \Phi(v) dv + \int_{E_{Cd}}^{\infty} \sigma(E) \Phi(E) dE \approx$$
$$\int_{0}^{v_{Cd}} \sigma_0 v_0 n(v) dv + \int_{E_{Cd}}^{\infty} \sigma(E) \frac{\Phi(E_{ref})}{\left(\frac{E}{E_{ref}}\right)^{1+\alpha}} dE =$$
$$\sigma_0 \Phi_s + I_0(\alpha) \Phi_e = \sigma_0 \Phi_s \left(1 + \frac{Q_0(\alpha)}{f}\right)$$

Principles of the k₀ method

First conventional approach: adapted Høgdahl

$$\mathbf{I}_{0}(\alpha) \equiv \int_{E_{Cd}}^{\infty} \sigma(E) \frac{E_{ref}^{\alpha}}{E^{1+\alpha}} dE$$

$$\Phi_e \equiv \Phi(E_{ref}) E_{ref}$$

$$I_{0}(\alpha) = E_{ref}^{\alpha} \left\{ \frac{I_{0}(0) - 0.429\sigma_{0}}{\overline{E}_{r}^{\alpha}} + \frac{0.429\sigma_{0}}{(2\alpha + 1)E_{Cd}^{\alpha}} \right\}$$
$$f = \frac{\Phi_{s}}{\Phi_{e}}$$

Principles of the k₀ method

Second conventional approach: Westcott

Takes non 1/v (n, γ) reactions into account using g(T).

Principles of the k₀**-IAEA software**

Adapted² Høgdahl conventional approach: Blaauw

$$R = \int_{0}^{\infty} \frac{\sigma_{0} v_{0}}{v} \Phi(v) dv + \int_{0}^{\infty} \left\{ \sigma(v) - \frac{\sigma_{0} v_{0}}{v} \right\} \Phi(v) dv$$
$$\approx \int_{0}^{\infty} \sigma_{0} v_{0} n(v) dv + \int_{0}^{\infty} \left\{ \sigma(E) - \frac{\sigma_{0} v_{0}}{v} \right\} \frac{\Phi(E_{ref})}{\left(\frac{E}{E_{ref}} \right)^{1+\alpha}} dE$$
$$= \sigma_{0} \Phi_{t} + I_{0}^{*}(\alpha) \Phi_{e}$$

$$= \sigma_0 \Phi_t + I_0(\alpha) \Phi_e$$
$$= \sigma_0 \Phi_t \left(1 + \frac{Q_0^*(\alpha)}{f^*} \right)$$

Principles of the k₀**-IAEA software**

Adapted² Høgdahl conventional approach: Blaauw

$$\mathbf{I}_{0}^{*}(\alpha) \equiv \int_{0}^{\infty} \left\{ \sigma(E) - \frac{\sigma_{0}v_{0}}{v} \right\} \frac{E_{ref}^{\alpha}}{E^{l+\alpha}} dE$$

$$\Phi_e \equiv \Phi(E_{ref}) E_{ref}$$

$$I_0^*(\alpha) = \frac{E_{ref}^{\alpha}}{\overline{E}_r^{\alpha}} \mathbf{I}_0^*(0)$$

$$f^* = \frac{\Phi_t}{\Phi_e}$$

TUDelft

Principles of the k₀**-IAEA software**

Conventional approach: Blaauw + Westcott + threshold

$$R = \sigma_0 g(T) \Phi_t + I_0^*(\alpha) \Phi_e + \sigma_{fast} \Phi_{fast}$$
$$= \sigma_0 \Phi_t \left(g(T) + \frac{Q_0^*(\alpha)}{f^*} + \sigma_{fast} \Phi_{fast} \right)$$

$$g(T) = \frac{\int_{0}^{\infty} \sigma(v) \frac{2v^{3}}{v_{T}^{4}} e^{-\left(\frac{v}{v_{T}}\right)^{2}} dv}{\int_{0}^{\infty} \frac{\sigma_{0}v_{0}}{v} \frac{2v^{3}}{v_{T}^{4}} e^{-\left(\frac{v}{v_{T}}\right)^{2}} dv}$$

The k₀ method and the k₀-IAEA software Relations between standard k₀ and k₀-IAEA parameters

$$Q_{0}^{*} = Q_{0} - 0.429$$

$$f^{*} = f + 0.429$$

$$\Phi_{t} = \Phi_{s} + \Phi_{e} \left(\frac{1}{0.5 + \alpha}\right) \sqrt{\frac{E_{0}}{E_{ref}}} \left(\frac{E_{ref}}{E_{Cd}}\right)^{(0.5 + \alpha)}$$

$$= \Phi_{s} + 0.429 \Phi_{e} \quad \text{if } \alpha = 0$$
and
$$E_{0} = 25 \text{ meV}, E_{Cd} = 0.55 \text{ eV}, E_{ref} = 1 \text{ eV}$$

How to implement the k₀ method

- 1- Characterize the detector first
 - find or determine the detector dimensions
 - measure peak-to-total ratio curve
 - measure full-energy efficiency curve
 - measure escape ratio curves (k₀-IAEA)
- 2- Characterize the irradiation facility second
 - determine T, f and α (and the fast flux)

How to implement the k₀ method - irradiation facility characterization

- determine T, f and α (and the fast flux)
 - use a suitable mix of elements, some with low Q₀, some with high Q₀, with various E_r's, some showing (n,p) or other threshold reactions, some being non- 1/v
 - for example: Zr, Au, Ni, Lu.

The trouble with the standard methods

- Cd-cover-method takes two samples of identical, complex composition - that's one too many.
- Bare triple-comparator method can only yield three parameters, we need five
- Adding Lu and e.g. Ni to the standard combination of Zr-Au seems a good option
- But foils and wires in one capsule are hard to count together (efficiency, decay, shielding)
- ⁹⁷Zr appear to be too extreme in its behavior, and not representative for the other high-Q nuclides

Possible alternatives

- Existing materials
 - available alloys that happen to be suitable
 - reference materials
 - SMELS
- Homemade mixtures
 - ground and mixed powders
 - solutions of suitable composition, pipetted on filter paper

An existing alloy

Concentration	Uncertainty	
4100	41	
809300	8093	
151600	1516	
27600	276	
2900	29	
	Concentration 4100 809300 151600 27600 2900	Concentration Uncertainty 4100 41 809300 8093 151600 1516 27600 276 2900 29

NIST Montana soil

Element	Concentration	Oncertainty	
Na	11400	148	
Mg	10500	200	
AI	65300	457	
Si	304400	943	
s	420	5	
к	24500	392	
Ca	28800	403	
Sc	9	2.25	
Ti	3060	116	
v	81.6	1.5	
Cr	47	11	
Mn	638	14	
Fe	28900	289	
Co	10	2.5	•

Element	Concentration	Uncertainty		Element	Concentration	Uncertainty	
Ni	20.6	0.55		In	1.1	0.275	
Cu	114	1		Sb	19.4	0.89	
Zn	350.4	2.4		I	3	0.75	
Ga	15	3.75		Cs	6.1	1.5	
As	105	4		Ba	726	18.9	
Se	1.52	0.07		La	40	10	
Br	5	1.25		Ce	69	17.3	
Rb	110	27.5		Nd	31	7.8	
Sr	245.3	0.34		Sm	5.9	1.5	
Y	25	6.25		Eu	1.1	0.28	
Zr	230	57.5		Dy	5.6	1.4	
Mo	1.6	0.4		Ho	1	0.25	
Aq	4.63	0.19		УЪ	2.7	0.68	
Ca	41.7	0.13	•	Ħŧ	7.3	1.8	-

Element	Concentration	Oncertainty	
ω	3	0.75	
Au	0.03	0.0075	
Hg	6.25	0.094	
РЪ	1162	15	
Th	14	3.5	
U	2.6	0.65	
			-
1			_

Home-made ground and mixed powders

- Too risky because of segregation
- To be tried only by experienced, trained, professional reference-material makers
- Don't even think of trying this at home!

Home-made solutions pipetted on filter paper

Delft - Sao Paolo example

Alternative methods for Thermal and Epithermal Flux Monitoring

Anneke Koster-Ammerlaan, Marcio Bacchi, Peter Bode, Elisabete A.De Nadai Fernandes

Trieste, Nov 8-10, 2010

Delft University of Technology

Poor reproducibility of f and α in consecutive irradiations under stable reactor conditions:

1st series (n=5) 2nd series (n=5)

- f 50 63 64 90
- α 0,07 0,11 0,02 0,08

Temporarily solved at IRI by choosing $\alpha = 0.10$ and calculating the corresponding *f* values

Conclusions:

• Metrology requires to determine spectrum parameters in every irradiation for every position inside the rabbit.

Cd-covered Zr-Au method:

- Inapplicable due to thermal heating of Cd with a serious risk of damage to the plastic irradiation container.
- Inapplicable due to flux depressions in the real samples

Bare triple method (Zr-Au):

- Poor counting statistics for ⁹⁷Zr under routine INAA conditions (t_{irr}: 1-4 h, t_d: 3-5 days, t_c: 1-4 h)
- Strong influence of counting statistics

Search for alternative pairs of flux and spectrum monitors Needed:

- High Q_0 , low E_r + High Q_0 , high E_r
- High σ_0
- No spectral interferences; minimal coincidence summing
- Easy to prepare in large batches
- t_{1/2} > 1 d

Epithermal flux can be neglected if f>50

Alternative set of monitors:

⁵¹Cr, ⁹⁹Mo, ¹⁹⁸Au

Verification in pool-side facility and Al-containers

Cd-covered Zr-Au-monitor
Cr, Mo, Au monitor
Zr, Au-monitor

Irradiation time: 30 minutes
(2 separate irradiations)
Decay time: 4 days
Counting time: 2 hours
Detector: 35 % Ge-detector

Characterization of pneumatic facility

5 Cr, Mo, Au-monitors

Irradiation time:1 hourDecay time:4 daysCounting time:1 hoursDetector:35 % Ge-detector

TUDelft

Conclusions:

- The Mo, Au, Cr- monitor is the solution for spatial f and α monitoring
- The monitor is easy to prepare in large batches
- The monitor will be used in routine INAA

