Joint ICTP-IAEA Workshop on Nuclear Data for Science and Technology: Analytical Applications

s-12 November 2010

Introduction in NAA

Radojko JACIMOVIC
Jozef Stefan Institute
Department of Environmental Sciences
Jamova cesta 39, 1000
Ljubljana SLOVENIA

Jožef Stefan Institute, Ljubljana, Slovenia
8.-12. November 2010 The Abdus Salam ICTP
Trieste, Italy

Introduction

Two features of ($\mathrm{n}, \mathrm{\gamma}$) reactor NAA are making its standardization potentially easy and accurate:

1. the high penetrability of matter for neutrons
2. existence of a delayed signal (besides the prompt gamma's).

Hence, standard and sample can be excited simultaneously and induced signals of both can be measured successively after a suited time following the end of irradiation.

Introduction

Other consequences:
\Rightarrow NAA is a bulk analysis method with multielement capability (element concentration and measured signal is nearly matrix-independent).
$>$ Matrix preparation can be kept simple.
$>$ Treatment of sample (and standard) after irradiation is possible (enabling etching, dissolution, chemical separation - RNAA).
$>$ High sensitivity (down to the $10^{-6}, 10^{-9}$ or even to the $10^{-12} \mathrm{~g} / \mathrm{g}$) attainable for many elements.
> Reference method for certification of new CRMs or RMs.

Introduction

Nuclear reactions: - direct $(B+a \rightarrow Y+b) ; \sim 10^{-22}-10^{-21} s$ - meta stable ($B+a \rightarrow X^{*} \rightarrow Y+b$); ~10-16-10-14 s
 γ_{0}
$\left[\right.$ e.g. $\mathrm{n}+{ }_{79}^{197} \mathrm{Au} \longrightarrow{ }_{79}^{198} \mathrm{Au} \longrightarrow{ }_{79}^{198} \mathrm{Au} \longrightarrow{ }_{80}^{198} \mathrm{Hg}^{*} \longrightarrow{ }_{80}^{198} \mathrm{Hg}$]
A typical (n, γ) reaction with β^{-}decay.

Introduction

- NAA - four techniques:
- Prompt Gamma Neutron Activation Analysis (PGNAA) (usually with energies < 0.001 eV); prompt gammy rays $\left(\gamma_{p}\right)$ emitted by the compound nucleus X^{*} are measured
- Thermal Neutron Activation Analysis (TNAA); from reactions in a well-thermalised reactor spectrum, the decay gamma rays $\left(\gamma_{d}\right)$ are measured
- Epithermal Neutron Activation Analysis (ENAA); resonance reactions are utilised by using suitable filters to remove thermal neutrons from the reactor spectrum and measuring decay gamma rays
- Fast Neutron Activation Analysis (FNAA); high-energy neutron sources are used without the presence of a moderator for slowing down the neutrons and gamma rays are measured.

(n, γ) reaction rate

Specific reaction rate per target nuclide

THERMAL NEUTRONS
Maxwell-Boltzmann distribution

Cross-section vs. E ($\sigma(v) \sim 1 / v)$

(n, γ) reaction rate

Cd total cross section and Cd

Hogdahl convention:

$$
\begin{aligned}
R_{X} & =\int_{0}^{v_{c d}} \sigma(v) \varphi^{\prime}(v) d v+\int_{E_{c d}}^{E_{2}} \sigma(E) \varphi(E) d E=R_{X, t h}+R_{X, e} \\
A l & \text { all }(\mathrm{n}, \gamma) \text { reactions are as follows: } \\
& -\mathrm{E}_{C d}=0.55 \mathrm{eV} \\
R_{X} & =\sigma_{0} v_{0} n_{t h}+\varphi_{e} I_{0}(\alpha)=\sigma_{0} \varphi_{t h}+\varphi_{e} I_{0}(\alpha)
\end{aligned}
$$

$$
\text { with: } \sigma_{0}=\sigma\left(v_{0}\right) \text { at reference velocity } v_{0}=2200
$$

$$
\mathrm{m} \mathrm{~s}^{-1}, \varphi_{\mathrm{th}}=v_{0} \mathrm{n}_{\mathrm{th}} \text { fluence rate for thermal }
$$

$$
\text { neutrons, } \mathrm{n}_{\mathrm{th}} \text { - thermal neutron density and }
$$

$$
I_{0}(\alpha)=(1 e V)^{\alpha} \int_{E_{C d}}^{E_{2}} \frac{\sigma(E) d E}{E^{1+\alpha}}
$$

resonance integral for epithermal part of spectra

(n, γ) reaction rate

For better adjustment of $(\mathrm{n}, \gamma$) reaction rate in Hogdahl convention it is necessary to introduce some correction factors:

- $\mathrm{G}_{\text {th }}$ - thermal neutron self-shielding (nucleus density)
- G_{e} - epithermal neutron self-shielding (density + resonance parameters)
- F_{Cd} - Cd transmission factor for epithermal neutrons

$$
R_{X}=G_{t h} \varphi_{t h} \sigma_{0}+G_{e} \varphi_{e} I_{0}(\alpha)
$$

Cd-ratio:

$$
R_{C d}=F_{C d} R_{C d}^{*}=1+\left(\frac{G_{t h} f}{G_{e} Q_{0}(\alpha)}\right) \text { with } \quad f=\frac{\varphi_{t h}}{\varphi_{e}} \quad \text { and } \quad Q_{0}(\alpha)=\frac{I_{0}(\alpha)}{\sigma_{0}}
$$

with $\mathrm{R}_{\mathrm{Cd}}{ }^{\text {* }}$ - measured Cd ratio:

$$
R_{C d}^{*}=\frac{\int_{0}^{\infty} \sigma(E) \varphi(E) d E}{\int_{0}^{\infty} T(E) \sigma(E) \varphi(E) d E}=\frac{\int_{0}^{E_{2}} \sigma(E) \varphi(E) d E}{F_{C d} \int_{E_{C d}}^{E_{2}} \sigma(E) \varphi(E) d E}
$$

Activation equation

$$
N_{1}^{0}=\frac{w N_{A} \Theta}{M} \quad \frac{d N_{1}}{d t^{\prime}}=-N_{1} R_{X, 1}
$$

$$
N_{1}=N_{1}^{0} e^{-R_{X, 1} t^{\prime}}
$$

taking into account the removal of nuclei of the nuclide produced

$$
\frac{d N}{d t^{\prime}}=N_{1} R_{X, 1}-N\left(\lambda+R_{N}\right)=R_{X, 1} N_{1}^{0} e^{-R_{X, 1} t^{\prime}}-N\left(\lambda+R_{N}\right)
$$

$$
N=\frac{N_{1}^{0} R_{X, 1} e^{-R_{X, 1} t_{i r}}}{\left(\lambda+R_{N}-R_{X, 1}\right)}\left(1-e^{\left(R_{X, 1}-\lambda-R_{N}\right) t_{t r r}}\right)
$$

$$
N=\frac{N_{1}^{0} R_{X, 1}}{\lambda}\left(1-e^{-\lambda t_{i r r}}\right) \begin{aligned}
& \text { not taking into account } \\
& \text { the removal of nuclei of } \\
& \text { the nuclide produced }
\end{aligned}
$$

Burn-up factor

$$
F_{b u r n}=\frac{\lambda e^{-R_{X, 1} t_{i r r}}\left(1-e^{\left(R_{X, 1}-\lambda-R_{N}\right) t_{i r r}}\right)}{\left(\lambda+R_{N}-R_{X, 1}\right)\left(1-e^{-\lambda t_{i r r}}\right)}
$$

N_{1} - initial number of irradiated nuclei in the target
N_{1} - number of target nuclide
N - number of radionuclide
w - mass of the investigated element
N_{A} - Avogadro constant $=6.02204510^{23} \mathrm{~mol}^{-1}$
M - molar mass
θ - isotopic abundance
λ - decay constant $=\ln (2) / T_{1 / 2}$
$\mathrm{t}_{\text {irr }}$ - irradiation time
$\mathrm{R}_{\mathrm{X}, 1}$ - specific reaction rate of target nuclide
R_{N}-specific reaction rate of radionuclide

Activation equation

Due to radioactive decay, the number of radioactive nuclei N decreases with time

$$
N=\frac{N_{1}^{0} R_{X, 1}}{\lambda}\left(1-e^{-\lambda t_{i r r}}\right) e^{-\lambda t}
$$

$$
\frac{d N}{d t}=-\lambda N
$$

is proportional to the count rate measured by the detector.

The result is the number of counts in the full-energy peak $\left(N_{p}\right)$ with the start of detection at time t_{d} after the end of irradiation:
$N_{p}=\frac{N_{1}^{0} R_{X, 1}}{\lambda}\left(1-e^{-\lambda t_{i m}}\right) e^{-\lambda t_{d}}\left(1-e^{-\lambda t_{m}}\right) \gamma \varepsilon_{p}$

$$
\downarrow
$$

$$
\frac{N_{p}}{t_{m}}=N_{1}^{0} R_{X, 1}\left(1-e^{-\lambda \lambda_{i m}}\right) e^{-\lambda t_{d}} \frac{\left(1-e^{-\lambda t_{m}}\right)}{\lambda t_{m}} \gamma \varepsilon_{p}
$$

$$
S=1-e^{-\lambda t_{i r r}} \quad \begin{aligned}
& \text { Factor for saturation } \\
& \text { during irradiation }
\end{aligned}
$$

$$
\begin{array}{cl}
D=e^{-\lambda t_{d}} & \text { Decay factor } \\
C=\frac{\left(1-e^{-\lambda t_{m}}\right)}{\lambda t_{m}} \quad \begin{array}{l}
\text { "Measurement" } \\
\text { factor }
\end{array}
\end{array}
$$

Activation equation

$$
\frac{N_{p}}{t_{m}}=\frac{w N_{A} \Theta}{M} R_{X, 1} S D C \gamma \varepsilon_{p}
$$

Activity, $\boldsymbol{A}\left[\mathrm{s}^{-1}\right]$ or the total count rate in the detector:

$$
A=N_{1}^{0} R_{X, 1} \gamma \varepsilon_{p}=\frac{w N_{A} \Theta}{M} R_{X, 1} \gamma \varepsilon_{p}
$$

Specific count rate $\left(\mathrm{s}^{-1} \mathrm{~g}^{-1}\right)$
$\varepsilon \quad$ Full-energy peak detection efficiency, including gamma attenuation
γ Probability of γ emission

$$
A_{s p}=\frac{N_{A} \Theta}{M} \frac{1}{F_{\text {burn }}}\left(G_{t h} \varphi_{t h} \sigma_{0}+G_{e} \varphi_{e} I_{0}(\alpha)\right) \gamma \varepsilon_{p}
$$

Specific count rate under Cd activation $\left(\mathrm{s}^{-1} \mathrm{~g}^{-1}\right)$
$\left(A_{s p}\right)_{C d}=\frac{N_{A} \Theta}{M} \frac{1}{F_{C d}} G_{e} \varphi_{e} I_{0}(\alpha) \gamma \varepsilon_{p}$

Nuclear research reactor TRIGA Mark II (250 kW)

- Short and long irradiation in the CC:

$$
\varphi_{\mathrm{th}} \sim 10 \cdot 10^{12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

- Short irradiation in the PT and in the FPTS (up-to 30 min .)

$$
\varphi_{\mathrm{th}} \sim 3.5 \cdot 10^{12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

- Long irradiation in the IC-40 (typically 20 hours)

$$
\varphi_{\mathrm{th}} \sim 1.1 \cdot 10^{12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

(IC) Irradiation channels 8.-12. November 2010, Trieste, Italy

Nuclear data of the target and nuclide formed

EI.	Nuclide	$\mathrm{T}_{1,2}$	$\sigma_{0,1}, \mathbf{b}$	$\mathrm{I}_{\mathbf{0}, 1}, \mathrm{~b}$	$\sigma_{0, N}, \mathrm{~b}$	$\mathbf{I}_{\mathbf{0}, \mathrm{N}}, \mathrm{b}$
Ru	${ }^{105} \mathrm{Rh}$	35.36 h	0.32	4,3	16000	17000
Eu	${ }^{152} \mathbf{E u}$	13.516 y	5900	1510	12800	1580
Eu	${ }^{152 \mathrm{~m}} \mathrm{Eu}$	9.113 h	3304	1790	70000	1580
Gd	${ }^{153} \mathrm{Gd}$	240.4 d	735	2020	36000	n. d.
Au	${ }^{198} \mathrm{Au}$	2.695 d	98.65	1550	25100	31031

Burn-up factor ($\mathrm{F}_{\text {burn }}$) in irradiation channels of the TRIGA reactor (calculations)

IC-40: $\quad \varphi_{\mathrm{th}} \sim 1.0 \cdot 10^{12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ PT: $\quad \varphi_{\mathrm{th}} \sim 3.5 \cdot 10^{12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ CC: $\quad \varphi_{\mathrm{th}} \sim 10 \cdot 10^{12} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

El.	Nuclide	$\mathrm{T}_{1,2}$	$F_{\text {burn }}(20 \mathrm{~h})$		
			IC-40	PT	CC
Ru	${ }^{105} \mathrm{Rh}$	35.36 h	0.999	0.998	0.994
Eu	${ }^{152} \mathrm{Eu}$	13.516 y	0.999	0.998	0.993
Eu	${ }^{152 \mathrm{~m}} \mathrm{Eu}^{2}$	9.113 h	0.998	0.993	$\mathbf{0 . 9 8 0}$
Gd	${ }^{153} \mathrm{Gd}$	240.4 d	0.999	0.995	0.987
Au	${ }^{198} \mathrm{Au}$	2.695 d	0.999	0.997	$\mathbf{0 . 9 9 1}$

El.	Nuclide	$\boldsymbol{F}_{\text {burn }}$ in the CC channel						
		$\mathbf{1 ~ h}$	$\mathbf{1 0 ~ h}$	$\mathbf{2 0} \mathbf{h}$	$\mathbf{5 0} \mathbf{h}$	$\mathbf{1 0 0} \mathbf{~ h}$	$\mathbf{2 0 0} \mathbf{~ h}$	
Ru	${ }^{105} \mathrm{Rh}$	1.000	0.997	0.994	0.988	0.980	0.973	
Eu	${ }^{152} \mathrm{Eu}$	1.000	0.997	0.993	0.983	0.967	0.935	
Eu	${ }^{152 \mathrm{~m}} \mathrm{Eu}$	0.999	0.988	0.980	0.966	0.958	0.946	
Gd	${ }^{153} \mathrm{Gd}$	0.999	0.993	0.987	0.968	0.937	0.879	
Au	${ }^{198} \mathrm{Au}$	1.000	0.995	0.991	0.978	0.961	0.938	

8.-12. November 2010, Trieste, Italy

(n, γ) Activation Analysis:
 Principles of standardization

The mass of the element $w_{a}=\frac{M_{a}}{N_{A} \Theta_{a} \gamma_{a}} \frac{\left(\frac{N_{p} / t_{m}}{S D C}\right)_{a}}{\left(G_{t, a} \varphi_{p_{t, a}} \sigma_{0, a}+G_{e, a} \varphi_{e, a} I_{0, a}(\alpha)\right) \varepsilon_{p, a}}$

1. Relative standardization
2. Single-comparator standardization 3. Absolute (parametric) standardization 4. k_{0}-standardization

Types of Ge detectors

Typical Absolute Efficiency Curves

Typical absolute efficiency curves for various Ge detectors
with 2.5 cm source to end-cap spacing
Code: (1) REGe, 15\% Relative Efficiency
XtRa, 15\% Relative Efficiency
$\begin{array}{ll}\text { (2) LEGe, } 10 \mathrm{~cm} \times 15 \mathrm{~mm} \text { thick } & \text { (4) Coaxial Ge, } 10 \% \text { Relative Efficiency }\end{array}$
(5) BEGe, $5000 \mathrm{~mm} \times 30 \mathrm{~mm}$ thick
8.-12. November 2010, Trieste, Italy

Assembling an Energy Spectroscopy System

