

2172-1

Joint ICTP-IAEA Workshop on Nuclear Data for Science and Technology: Analytical Applications

8 - 12 November 2010

Introduction in NAA

Radojko JACIMOVIC

Jozef Stefan Institute Department of Environmental Sciences Jamova cesta 39, 1000 Ljubljana SLOVENIA

Introduction to Neutron Activation Analysis (NAA)

R. Jaćimović

Jožef Stefan Institute, Ljubljana, Slovenia

8.-12. November 2010 The Abdus Salam ICTP Trieste, Italy

Introduction

Two features of (n, γ) reactor NAA are making its standardization potentially easy and accurate:

 the high penetrability of matter for neutrons
existence of a delayed signal (besides the prompt gamma's).

Hence, standard and sample can be excited simultaneously and induced signals of both can be measured successively after a suited time following the end of irradiation.

Introduction

Other consequences:

- NAA is a bulk analysis method with multielement capability (element concentration and measured signal is nearly matrix-independent).
- Matrix preparation can be kept simple.
- Treatment of sample (and standard) after irradiation is possible (enabling etching, dissolution, chemical separation - RNAA).
- High sensitivity (down to the 10⁻⁶, 10⁻⁹ or even to the 10⁻¹² g/g) attainable for many elements.
- Reference method for certification of new CRMs or RMs.

8.-12. November 2010, Trieste, Italy

Introduction

- NAA four techniques:
 - Prompt Gamma Neutron Activation Analysis (PGNAA) (usually with energies < 0.001 eV); prompt gammy rays (γ_p) emitted by the compound nucleus X* are measured
 - Thermal Neutron Activation Analysis (TNAA); from reactions in a well-thermalised reactor spectrum, the decay gamma rays (γ_d) are measured
 - Epithermal Neutron Activation Analysis (ENAA); resonance reactions are utilised by using suitable filters to remove thermal neutrons from the reactor spectrum and measuring decay gamma rays
 - Fast Neutron Activation Analysis (FNAA); high-energy neutron sources are used without the presence of a moderator for slowing down the neutrons and gamma rays are measured.

(n, γ) reaction rate

resonance integral for epithermal part of spectra

Cd total cross section and Cd transmission function T(E) for 1 mm Cd

(n, γ) reaction rate

For better adjustment of (n,γ) reaction rate in Hogdahl convention it is necessary to introduce some correction factors:

- G_{th} thermal neutron self-shielding (nucleus density)
- G_e epithermal neutron self-shielding (density + resonance parameters)
- F_{Cd} Cd transmission factor for epithermal neutrons

$$R_X = G_{th} \varphi_{th} \sigma_0 + G_e \varphi_e I_0(\alpha)$$

Cd-ratio:

$$R_{Cd} = F_{Cd} R_{Cd}^* = 1 + \left(\frac{G_{th} f}{G_e Q_0(\alpha)}\right) \text{ with } f = \frac{\varphi_{th}}{\varphi_e} \text{ and } Q_0(\alpha) = \frac{I_0(\alpha)}{\sigma_0}$$

ashar a and mi

with R_{Cd}^* - measured Cd ratio:

$$R_{Cd}^{*} = \frac{\int_{0}^{\infty} \sigma(E) \,\varphi(E) \,dE}{\int_{0}^{\infty} T(E) \,\sigma(E) \,\varphi(E) \,dE} = \frac{\int_{0}^{E_{2}} \sigma(E) \,\varphi(E) \,dE}{F_{Cd} \int_{E_{Cd}}^{E_{2}} \sigma(E) \,\varphi(E) \,dE}$$

Activation equation

$$N_1^0 = \frac{w N_A \Theta}{M}$$

$$\frac{dN_1}{dt'} = -N_1 R_{X,1}$$

taking into account the removal of nuclei of the nuclide produced

 $N_1 = N_1^0 e^{-R_{X,1}t'}$

$$\frac{dN}{dt'} = N_1 R_{X,1} - N \left(\lambda + R_N\right) = R_{X,1} N_1^0 e^{-R_{X,1}t'} - N \left(\lambda + R_N\right)$$

$$N = \frac{N_1^0 R_{X,1} e^{-R_{X,1} t_{irr}}}{(\lambda + R_N - R_{X,1})} (1 - e^{(R_{X,1} - \lambda - R_N) t_{irr}})$$

$$N = \frac{N_1^0 R_{X,1}}{\lambda} (1 - e^{-\lambda t_{inr}})$$

not taking into account the removal of nuclei of the nuclide produced

Burn-up factor

$$F_{burn} = \frac{\lambda e^{-R_{X,1}t_{irr}} (1 - e^{(R_{X,1} - \lambda - R_N)t_{irr}})}{(\lambda + R_N - R_{X,1})(1 - e^{-\lambda t_{irr}})}$$

- N⁰₁ initial number of irradiated nuclei in the target
- N₁ number of target nuclide
- N number of radionuclide
- w mass of the investigated element
- N_A- Avogadro constant=6.022045 10²³ mol⁻¹
- M molar mass
- Θ isotopic abundance
- λ decay constant = $In(2)/T_{1/2}$
- t_{irr} irradiation time
- R_{X,1} specific reaction rate of target nuclide
- R_N specific reaction rate of radionuclide

Activation equation

10

Due to radioactive decay, the number of radioactive nuclei N decreases with time

$$\frac{dN}{dt} = -\lambda N$$

$$N = \frac{N_1^0 R_{X,1}}{\lambda} (1 - e^{-\lambda t_{irr}}) e^{-\lambda}$$

is proportional to the count rate measured by the detector.

The result is the number of counts in the full-energy peak (Np) with the start of detection at time t_d after the end of irradiation:

Activation equation

 $\boldsymbol{\mathcal{E}}_p$

$$\frac{N_p}{t_m} = \frac{w N_A \Theta}{M} R_{X,1} S D C \gamma \varepsilon_p$$

Activity, A [s⁻¹] or the total count rate in the detector:

$$A = N_1^0 R_{X,1} \gamma \varepsilon_p = \frac{w N_A \Theta}{M} R_{X,1} \gamma \varepsilon_p$$

Probability of γ emission

Specific count rate (s⁻¹ g⁻¹) $A_{sp} = \frac{N_A \Theta}{M} R_{X,1} \gamma \varepsilon_p \quad \text{or} \quad A_{sp} = \frac{N_p / t_m}{S D C w}$

$$A_{sp} = \frac{N_A \Theta}{M} \frac{1}{F_{burn}} \left(G_{th} \varphi_{th} \sigma_0 + G_e \varphi_e I_0(\alpha) \right) \gamma \varepsilon_p$$

Specific count rate under Cd activation (s⁻¹ g⁻¹)

$$(A_{sp})_{Cd} = \frac{N_A \Theta}{M} \frac{1}{F_{Cd}} G_e \varphi_e I_0(\alpha) \gamma \varepsilon_p$$

Nuclear research reactor TRIGA Mark II (250 kW)

- Short and long irradiation in the CC: $\phi_{th} \sim 10.10^{12} \text{ cm}^{-2} \text{ s}^{-1}$

- Short irradiation in the PT and in the FPTS (up-to 30 min.) $\phi_{th} \sim 3.5 \cdot 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$

- Long irradiation in the IC-40 (typically 20 hours) $\phi_{th} \sim 1.1 \cdot 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$

Nuclear data of the target and nuclide formed

El.	Nuclide	T _{1,2}	σ _{0,1} , b	I _{0,1} , b	σ _{0,N} , b	I _{0,N} , b	
Ru	¹⁰⁵ Rh	35.36 h	0.32	4,3	16000	17000	
Eu	¹⁵² Eu	13.516 y	5900	1510	12800	1580	
Eu	^{152m} Eu	9.113 h	3304	1790	70000	1580	
Gd	¹⁵³ Gd	240.4 d	735	2020	36000	n.d.	
Au	¹⁹⁸ Au	2.695 d	98.65	1550	25100	31031	
n. d.: no data							

....

Burn-up factor (F_{burn}) in irradiation channels of the TRIGA reactor (calculations)

IC-40:	$\varphi_{th} \sim 1.0 \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$
PT:	$\varphi_{th} \sim 3.5 \cdot 10^{12} \text{ cm}^{-2} \text{s}^{-1}$
CC:	$\varphi_{th} \sim 10.10^{12} \text{ cm}^{-2} \text{s}^{-1}$

El.	Nuclide	т	F_{burn} (20 h)			
	INUCIICE	T _{1,2}	IC-40	РТ	CC	
Ru	¹⁰⁵ Rh	35.36 h	0.999	0.998	0.994	
Eu	¹⁵² Eu	13.516 y	0.999	0.998	0.993	
Eu	^{152m} Eu	9.113 h	0.998	0.993	0.980	
Gd	¹⁵³ Gd	240.4 d	0.999	0.995	0.987	
Au	¹⁹⁸ Au	2.695 d	0.999	0.997	0.991	

El.	Nuclide	F _{burn} in the CC channel						
L1.		1 h	10 h	20 h	50 h	100 h	200 h	
Ru	¹⁰⁵ Rh	1.000	0.997	0.994	0.988	0.980	0.973	
Eu	¹⁵² Eu	1.000	0.997	0.993	0.983	0.967	0.935	
Eu	^{152m} Eu	0.999	0.988	0.980	0.966	0.958	0.946	
Gd	¹⁵³ Gd	0.999	0.993	0.987	0.968	0.937	0.879	
Au	¹⁹⁸ Au	1.000	0.995	0.991	0.978	0.961	0.938	

8.-12. November 2010, Trieste, Italy

(n, γ) Activation Analysis: **Principles of standardization**

W

The mass of the element

mass of the element
$$W_a = \frac{M_a}{N_A \Theta_a \gamma_a} \frac{\left(\frac{N_p / t_m}{S D C}\right)_a}{(G_{th,a} \varphi_{th,a} \sigma_{0,a} + G_{e,a} \varphi_{e,a} I_{0,a}(\alpha))\varepsilon_{p,a}}$$

1. Relative standardization 2. Single-comparator standardization 3. Absolute (parametric) standardization 4. k₀-standardization

::•

Types of Ge detectors

8.-12. November 2010, Trieste, Italy

Assembling an Energy Spectroscopy System

....