The Abdus Salam
United Nations
Educational, Scientific and International Centre for Theoretical Physics

Joint ICTP-IAEA Workshop on Nuclear Data for Science and Technology: Analytical Applications

s-12 November 2010

The interaction of charged particles with atomic nuclei

Alexander GURBICH
State Scientific Center, Instit. of Phys. \& Power Eng.
Bondarenko Sq. 1
Kaluga Region, 249033
Obninsk
RITISEA

The interaction of charged particles with atomic nuclei

Alexander Gurbich

(1)

Institute of Physics and Power Engineering
Obninsk, Russia

PLAN OF THE LECTURE

- Nuclear physics fundamentals
- S-matrix formalism
- Projectile-nucleus interaction mechanisms
- Potential scattering
- Optical model
- Resonance interaction
- Compound nucleus
- R-matrix theory
- R-matrix theory
- Deuteron Induced reactions
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ATOMIC NUCLEUS

The atomic nucleus is the centre of an
atom. The nucleus radius is much
smaller than that of the atom. Thus, the
nucleus occupies an extremely small
volume inside the atom. Nuclei are
composed of protons and neutrons. The
number of protons in an atomic nucleus
is called the atomic number, and
determines which element the atom is.
The number of neutrons determines the
isotope of the element.

What else do we know about the nucleus?

In addition to its atomic number and mass number, a nucleus is also characterized by its size, shape, binding energy,
angular momentum, and (if it is unstable) half-life. The nucleus is now understood to be a quantum system composed of protons and neutrons, particles of nearly equal mass and the same intrinsic angular momentum (spin) of $1 / 2$. The proton carries one unit of positive electric charge while the neutron has no electric charge. The binding energy of a nucleus is the energy holding a nucleus together.

A nucleus is identified by its atomic number Z (i.e., the number of protons), the neutron number, N, and the mass number, A, where $A=Z+N$.

Mass defect: $\Delta m=\left(Z m_{p}+N m_{n}\right)-m_{X}$
Binding energy: $\mathrm{E}_{\mathrm{B}}=\Delta \mathrm{mc}^{2}$
\qquad Nonember $=$ A - Z
\qquad

NUCLEAR REACTION

An example: ${ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{12} \mathrm{C}+\alpha+\gamma(4.965 \mathrm{MeV})$
Conservation laws:

- Number of nucleons A
- Electric charge Z
- Energy
- Momentum
-Angular momentum
Application of the conservation of energy gives the Q value of the reaction
\qquad
\qquad

The Q -value of the reaction

$$
Q \equiv T_{f}-T_{i}
$$

where T_{i} and T_{f} are the kinetic energies of the system in the initial and the final state, respectively
Q is the energy released by the reaction
If $Q>0$, the reaction proceeds even if $T_{i}=0$ (exoergic reaction) If $\mathrm{Q}<0$, the reaction proceeds only if $\mathrm{T}_{\mathrm{i}} \geq|\mathrm{Q}|$ (endoergic reaction)
$|\mathrm{Q}|$ is the threshold energy of the reaction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NUCLEAR AND ELECTRICAL FORCES

Nuclear forces

Nuclear forces are:
Strong
Attractive
Short-range
Exchanged
Non-central
Electrical forces
Can be represented as:
$V_{C}(r)= \begin{cases}\frac{Z z e^{2}}{r} & \text { for } r \geq R \\ \frac{Z e^{2}}{2 R}\left(3-\frac{r^{2}}{R^{2}}\right) & \text { for } \\ r \leq R\end{cases}$
$R \approx(1.1 \div 1.5) \cdot \mathrm{A}^{1 / 3} \mathrm{fm}$
$\left(1 \mathrm{fm}=10^{-13} \mathrm{~cm}\right)$

8

COMPARISON OF THE FORCE FEATURES

Force properties	Nuclear forces	Electrical forces
Range	$\sim 1 \mathrm{fm}\left(10^{-13} \mathrm{~cm}\right)$	Long
Electric charge	Non-sensitive	Sensitive
Saturation	Yes	No
Spin dependence	Yes	No

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

NUCLEAR + COULOMB POTENTIAL

The Coulomb repulsion changes to (nuclear) attraction at the distance R.

Nuclear potential is pictured in the form of a square potential well which is about $40 \div 50$ MeV deep.

$$
\begin{aligned}
& \text { Coulomb potential barrier height is } \quad B_{C}=\frac{Z z e^{2}}{R} \\
& \text { Transparency of the Coulomb barrier is } \quad D \approx e^{-\frac{2}{\hbar} \int_{r_{1}}^{2} \sqrt{2}}
\end{aligned}
$$

RUTHERFORD SCATTERING

Dependence of the force on the distance is known \Rightarrow analytical solution is possible

$$
\tan \theta=\frac{2 Z z e^{2}}{m v^{2} b}
$$

$$
\begin{aligned}
& d \sigma=\frac{d N}{N}=2 \pi b d b \\
& d \sigma=n\left(\frac{Z z e^{2}}{m v^{2}}\right) \frac{d \Omega}{4 \sin ^{4} \frac{\theta}{2}}
\end{aligned}
$$

Schrödinger equation

According to quantum mechanics a particle state is described by the wave function ψ, which is obtained as a solution of the wave equation.

For the case of elastic scattering of spinless non-identical particles the wave equation has a form of Schrödinger equation with a spherically symmetric potential $V(r)$

$$
\Delta \psi+\frac{2 m}{\hbar^{2}}(E-V) \psi=0
$$

where in spherical coordinates Laplace operator Δ is
$\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}$

NUCLEAR POTENTIAL SCATTERING

The angular distribution of the scattered particles is defined by the $f(\theta)$ function.
The differential cross-section is $\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}$

DEFINITION OF THE DIFFERENTIAL CROSS-SECCTION

By definition the differential cross section $d \sigma$ is equal to the fraction $d N / N$ of the projectiles scattered into the given solid angle $d \Omega$.
$d \Omega=\sin \theta d \theta d \varphi$
Assuming a unity density of particles in the primary beam, the flux density is $N=v\left(\mathrm{~s}^{-1} \cdot \mathrm{~cm}^{-2}\right)$,
where v is the particle velocity. The number of particles $d N$ traversing the surface element $d S$ per time unit is determined by the probability of finding particles in the elementary volume $d V=v r^{2} \sin \theta d \theta d \varphi$,
and the probability density is given by the square of the modulus of the scattered wave function: $d N=\left|f(\theta) \frac{e^{i k r}}{r}\right|^{2} v r^{2} \sin \theta d \theta d \varphi ; \quad \frac{d \sigma}{d \Omega}=|f(\theta)|_{14}^{2}$

SOLUTION OF THE WAVE EQUATION

General solution is $\quad \psi=\sum_{l=0}^{\infty} A_{l} P_{l}(\cos \theta) R_{k l}(r)$,
where $R_{k l}(r)$ is a radial wave function and $P_{l}(\cos \theta)$ are Legendre polynomials $P_{0}=1, P_{1}=\cos \theta, P_{2}=\left(3 \cos ^{2} \theta-1\right) / 2, \ldots$

RADIAL WAVE FUNCTION ASYMPTOTIC

WAVE FUNCTIONS EXPANSION

Incident Wave: $\quad e^{i k \pi}=\sum_{l=0}^{\infty} \frac{(2 l+1) i^{l}}{2 i k r} P_{l}(\cos \theta)\left[e^{i\left(k-1 \frac{\pi}{2}\right)}-e^{-i\left(k-1 \frac{\pi}{2}\right)}\right]$
Incident + Divergent: $e^{i k x}+f(\theta) \frac{e^{i l r}}{r}=\sum_{l=0}^{\infty} \frac{(2 l+1) i^{l}}{2 i k r} P_{l}(\cos \theta)\left[S_{l} e^{i\left(k r-1 \frac{\pi}{2}\right)}-e^{-i\left(k r-1 \frac{\pi}{2}\right)}\right]$

RELATION BETWEEN SCATTERING AMPLITUDE AND PHASES

$$
f(\theta)=\frac{1}{2 i k} \sum_{l}(2 l+1)\left(e^{2 i i_{l}}-1\right) P_{l}(\cos \theta) .
$$

PARTIAL WAVES

The initial beam behaves as if it were subdivided in cylindrical zones

Suppose the projectile possesses kinetic

 momentum p and angular momentum I.Then from comparison between classical and quantum mechanical relations for the modulus of the angular momentum

$$
|\vec{l}|=p \rho=\hbar \sqrt{l(l+1)}
$$

follows that

$$
\rho=\frac{\hbar}{p} \sqrt{l(l+1)}=\lambda \sqrt{l(l+1)}
$$

TAKING PROJECTILE CHARGE AND SPIN

 INTO ACCOUNT\qquad

IF PROJECTILE IS CHARGED THEN

$f(\theta)=f_{C}(\theta)+\frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1)\left(S_{l}-1\right) e^{2 i \sigma_{l}} P_{l}(\cos \theta)$

IF PROJECTILE HAS SPIN $1 / 2$ THEN

$$
d \sigma / d \Omega=|A(\theta)|^{2}+|B(\theta)|^{2},
$$

$A(\theta)=f_{C}(\theta)+\frac{1}{2 i k} \sum_{l=1}^{\infty}\left[(l+1) S_{l}^{+}+l S_{l}^{-}-(2 l+1)\right] \exp \left(2 i \sigma_{l}\right) P_{l}(\cos \theta) ;$
$B(\theta)=\frac{1}{2 i k} \sum_{l=0}^{\infty}\left(S_{l}^{+}-S_{l}^{-}\right) \exp \left(2 i \sigma_{l}\right) P_{l}^{1}(\cos \theta)$

OPTICAL MODEL

In the so-called optical model nucleus is represented by means of a complex potential. The interaction of the projectile with the nucleus is then reduced to de-Broglie's wave refraction and absorption by a opaque sphere. The name of the model originates from the formal analogy with the light plane wave passing through a semitransparent sphere.
> As well as refraction and absorption of the light is described by a complex index
$>n=n_{r}+i \kappa_{a}$
$>$ the complex potential of the form
> $U=V+i W$
$>$ is used to take into account scattering and absorption of the projectile by the nucleus. The real part of the potential is responsible for scattering whereas the imaginary part stands for absorption.

OPTICAL MODEL POTENTIAL

Complex potential:	$U=V+i W$
The standard form of the potential:	$U(r)=U_{C}(r)+U_{R}(r)+i U_{1}(r)+U_{\text {so }}(r)$
	$U_{R}(r)=-V_{R} f_{R}(r)$
	$U_{1}(r)=4 a_{i} W_{D} \frac{d f_{i}(r)}{d r}$
	$U_{\mathrm{so}}=\left(\frac{\hbar}{m_{\pi} c}\right)^{2} V_{\mathrm{so}} \frac{1}{r} \frac{d f_{\mathrm{so}}}{d r} \boldsymbol{l} \cdot \mathrm{~s}$
	$f_{R}(r)=\left[1+\exp \left(\frac{r-R_{x}}{a_{x}}\right)\right]^{-1}$
	$R_{x}=r_{x} A^{1 / 3}$
	21

Low energy peculiarities:

- The strength parameters often have strong energy dependence in the vicinity of the Coulomb barrier.
- The real potential radial dependence is of more complicated than Saxon-Woods form
- The imagine part of potential reveals non-systematic dependence on nucleus mass number.
- The imagine part of potential is close to zero for light nuclei.
- Absorption is peaked at the nucleus surface.
- The radius of the imaginary potential diminishes with decreasing energy while its diffuseness increases.

Conclusion

Global sets of parameters are inapplicable at low energy!

Modification of Saxon-Woods form-factor

For deformed nucleus channel coupling is essential. A simple way o take it into account is the modification of the real part of the optical potential by adding a surface term to the Saxon-Woods potential:

$$
U_{R}(r)=-V_{R} f\left(r, r_{R}, a_{R}\right)+4 a_{S} V_{S} \frac{d}{d r} f\left(r, r_{S}, a_{S}\right)
$$

Splitting V_{R} to take account of exchange mechanism in the case of complex particles scattering

The optimal potential parameters obtained for ${ }^{12} \mathrm{C}\left({ }^{4} \mathrm{He},{ }^{4} \mathrm{He}\right){ }^{12} \mathrm{C}$ scattering								
$\begin{gathered} V_{V=0} \\ \mathrm{MeV} \end{gathered}$	$\begin{gathered} V_{k=1} \\ \mathrm{MeV} \end{gathered}$	$\begin{gathered} V_{V=2} \\ \mathrm{MeV} \end{gathered}$	$\begin{gathered} V_{k=3} \\ \mathrm{MeV} \end{gathered}$	$\begin{gathered} V_{V=4} \\ \mathrm{MeV} \end{gathered}$	V_{155}	$\begin{aligned} & r_{R} \\ & f m \end{aligned}$	$\begin{gathered} a_{R} \\ f m \end{gathered}$	$\begin{gathered} r_{\mathrm{c}} \\ \mathrm{fm} \end{gathered}$
47.89	50.10	46.30	47.70	42.90	47.00	1.43	0.70	1.45

\qquad

\qquad
\qquad
\qquad

Shape resonance dependence on W_{D}

\qquad

Shape resonance dependence on a_{R}

SPIN-ORBIT INTERACTION

Level spliting:

\qquad
\qquad
Resonances in proton elastic scattering:
\qquad
\qquad
\qquad 29

RESONANCE SCATTERING

TYPES OF THE NUCLEAR INTERACTION MECHANISMS AT LOW ENERGIES

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DIFFERENT TYPES OF THE PROJECTILE - NUCLEUS INTERECTION

\qquad

Elastic scattering: Outgoing particle $=$ Ingoing particle
Outgoing particle energy = Ingoing particle energy
Direct reaction: Energy of the projectile is transferred to one nucleon or to a small group of nucleons.
Outgoing particle - any particle allowed by the
conservation laws.
The interaction time is $\sim 10-22 \mathrm{~s}$
Compound nucleus reaction:
Energy of the projectile is transferred to all the nucleons.
When particle is emitted the residual nucleus may stay both in ground state and in excited one.
The interaction time is $\sim 10^{-15} \mathrm{~s}$.

SCATTERING VIA COMPOUND NUCLEUS

An example: the (d,p)-reaction. The time the compound nucleus

 stays in an excited state is long as compared with the time needed for the projectile to traverse the domain occupied by the nucleus.The reaction proceeds in two stages - the compound nucleus is created and in a while it decays.

AJZENBERG-SELOVE'S COMPILATION

EFFECT OF SHAPE RESONANCE ON THE ELASTIC SCATTERING OF PROTONS FROM ${ }^{16} \mathrm{O}$

\qquad
\qquad
\qquad
\qquad
\qquad

Isobaric Analog Resonances in the excitation function for proton elastic scattering

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ISOBARIC ANALOG STATES

Isobare: Nuclide with the same masse (A) but different charge (Z)

Except for electrical forces the n-n, n-p, and p-p interactions are similar

The energy levels of isobaric (equal A) nuclei are relatively insensitive toward the interchange of a proton and a neutron.
The isobaric analog state will have the same properties, but will have a higher energy, $\delta \mathrm{E}_{\mathrm{C}}$, because of the additional Coulomb energy associated with the extra proton, less the neutron-proton mass difference.

Ericson's fluctuations in the excitation function for proton elastic scattering from ${ }^{56} \mathrm{Fe}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

R-MATRIX THEORY

If a wave-function and its derivative are known at the boundary of the
nucleus it can be found everywhere outside the nucleus
\qquad
The S matrix is expressed through R-matrix which is defined to connect
values u_{l} with its derivative at the nucleus boundary $u_{l}(a)=R_{l} a\left(\frac{d u_{l}}{d r}\right)_{r=a}$
R_{l} can be expressed as $R_{l}=\sum_{\lambda} \frac{\gamma_{l, \lambda}^{2}}{E_{\lambda}-E}$
where $\gamma_{l, \lambda}=\left(\frac{\hbar}{2 m a}\right)^{1 / 2} u_{l, \lambda}(a)$
The functions $u_{1, \lambda}$ correspond to actual states E_{λ} of the nucleus
The quantities $\gamma_{1, \lambda}$ are connected with energy width of states
The cross-section can be written in terms of the R-matrix

THE EFFECT OF THE CHANNEL SPIN ON A RESONANCE SHAPE

For a target of spin I_{t} and projectile of spin I_{p} the two spins are coupled to form a channel spin s. This channel spin is then combined with the relative orbital angular momentum / to form the spin of the compound nuclear state J.

Allowed combinations of quantum
numbers for elastic proton
scattering through the $J=2^{-}$level of the target with $I_{t^{\pi}}=5 / 2^{+}$

l	s
1	2
1	3
3	2
3	3

\qquad
41

PROTON INDUCED REACTIONS

- (p, α)-reaction

- are mainly exoergic (Q~1-3 MeV)
- the cross section is not large (because of high Coulomb barrier for α-partile)
- (p,n)-reaction
- are always endoergic ($\mathrm{Q}<-0.8 \mathrm{MeV}$)
- (p, γ)-reaction
- γ-rays of different energy are emitted corresponding to transitions on different levels of the residual nucleus
- (p,p'γ)-reaction
-is only possible if the projectile energy exceeds the first level energy in the target nucleus

Scheme of the ($\mathrm{p}, \mathrm{p}^{\prime} \gamma$)-reaction

\qquad
\qquad
\qquad
\qquad
\qquad

DEUTERON INDUCED REACTIONS

Three mechanisms:

- Direct stripping (with amplitude of D)
- Resonant mechanism (with amplitude of R)
- Compound nucleus mechanism (incoherent contribution)

The total amplitude of the process is $D+R$ \qquad
\qquad
\qquad
\qquad

DEUTERON INDUCED REACTIONS (STRIPPING)

\qquad

For deuteron the $\mathrm{p}-\mathrm{n}$ distance is $\sim 4 \cdot 10^{-13} \mathrm{~cm}$ (for the rest of nuclei $\sim 2 \cdot 10^{-13} \mathrm{~cm}$)
Due to electrical forces deuteron is oriented in such a way that proton is farther from the nucleus than neutron. Because deuteron binding energy is small, neutron may be absorbed by nucleus, while proton keeps moving

DEUTERON INDUCED REACTIONS (VIA COMPOUND NUCLEUS)

- Binding energy for deuteron is very low:
$E_{B} \approx 2.2 \mathrm{MeV}->1 \mathrm{MeV} /$ Nucleon (For the rest of nuclei $\sim 8 \mathrm{MeV} /$ Nucleon)
- Since the binding energy of deuteron in a compound nucleus is
$E_{B}(A, Z)-E_{B}(A-2, Z-1)-E_{B}(d) \approx 8 A-8(A-2)-2,2 \approx 14 \mathrm{MeV}$
the excitation energy of the compound nucleus is of order $\mathrm{T}+14 \mathrm{MeV}$ and all the reactions (d, p), (d, n), (d, α) are possible and are highly exoergic.

Contribution of Direct Reaction Mechanism

(p, α)-reactions

- The (p, α)-reactions are mainly exoergic ($\mathrm{Q} \sim 1-3 \mathrm{MeV}$).
- Because of the high Coulomb barrier for a-particles the cross-section is not large
- For the (p, α)-reactions which lead to the excited states in the residual nucleus the cross-section for low energy protons is as a rule negligible.

Alphas as projectiles

- The gamma-emission mechanism resembles that for protons.
- The alpha-particle is a strongly bound system the reactions with nucleons in the exit channel are endoergic.
- The compound nucleus produced as a result of the capture of a low energy alpha particle can decay mainly back to the elastic channel or by emitting gammas.
- A threshold for the (α, p)-reaction is usually greater than 1 MeV and due to the Coulomb barrier the cross section for (α, p)-reaction is as a rule small.
- Different mechanisms contribute to the alpha elastic scattering cross section beyond the energy region where it follows the Rutherford law. These are direct (shape elastic) scattering, compound elastic scattering, resonance scattering of a different origin, and exchange processes which consist in exchange of nucleons between alphaparticle and target nucleus in the course of scattering.

Laboratory and centre of mass frames

The laboratory frame of reference is a frame where detector is placed. In IBA experiments target nucleus is always in rest in this frame.

For a projectile of the mass M_{1} moving along an x axis towards a target nucleus of the mass M_{2} the point with a coordinate x_{C} defined as

$$
x_{C}=\frac{M_{1} x_{1}+M_{2} x_{2}}{M_{1}+M_{2}}
$$

where x_{1} and x_{2} are the projectile and the target coordinates respectively is a centre of mass (CM) of the system comprised of these two particles. This point moves in the laboratory reference frame with the velocity

$$
\vec{V}_{C}=\frac{M_{1} \vec{v}_{1}}{M_{1}+M_{2}}
$$

where \vec{v}_{1} is the projectile velocity. The centre of mass reference frame is ${ }_{51}$ defined as a frame with an origin fixed in the point x_{C}

König's theorem

The kinetic energy of a system consisted of a projectile and a target is the kinetic energy associated to the movement of the center of mass and the kinetic energy associated to the movement of the particles relative to the center of mass.

For the projectile possessing the kinetic energy E_{1} (in the laboratory frame) this means that

$$
E_{1}=\frac{\left(M_{1}+M_{2}\right) V_{C}^{2}}{2}+E_{r e l}
$$

where $E_{\text {rel }}$ is the kinetic energy of colliding particles in their relative motion in the CM system

$$
E_{\text {rel }}=\frac{M_{2}}{M_{1}+M_{2}} E_{1}
$$

Kinematics of elastic scattering

$$
\tan \theta_{l a b}=\frac{\sin \theta_{c m}}{\gamma_{3}+\cos \theta_{c m}}
$$

$$
\cos \theta_{c m}=\left[\cos ^{2} \theta_{l a b}\left(1-\gamma_{3}^{2} \sin ^{2} \theta_{l a b}\right)\right]^{1 / 2}-\gamma_{3} \sin ^{2} \theta_{l a b}
$$

$$
\gamma_{3}=\left(\frac{M_{1} M_{3}}{M_{2} M_{4}}\right)^{1 / 2}\left(1+\frac{M_{1}+M_{2}}{M_{2}} \frac{Q}{E_{1}}\right)^{-1 / 2}
$$

$$
K=\frac{E_{3}}{E_{1}}=\frac{\left\{\left(M_{1} / M_{2}\right) \cos (\theta)+\left[1-\left(M_{1} / M_{2}\right)^{2} \sin ^{2}(\theta)\right]^{1 / 2}\right\}^{2}}{\left(1+M_{1} / M_{2}\right)^{2}}
$$

Cross-section lab-c.m. transformation

The relation between the differential cross-sections expressed in the CM and laboratory frames is derived from the equality of the number of particles emitted in the corresponding solid angles in the two frames:

$$
\begin{gathered}
\left.\frac{d \sigma}{d \Omega}\right|_{l a b} d \Omega_{l a b}=\left.\frac{d \sigma}{d \Omega}\right|_{c m} d \Omega_{c m} \\
\left.\frac{d \sigma}{d \Omega}\right|_{l a b} \sin \theta_{l a b} d \theta_{l a b} d \varphi_{l a b}=\left.\frac{d \sigma}{d \Omega}\right|_{c m} \sin \theta_{c m} d \theta_{c m} d \varphi_{c m}
\end{gathered}
$$

Nuclear physics Internet resources relevant to res	
The resource address	
http://www.nndc.bnl.gov/qcalc/	Description
http://nucleardata.nuclear.lu.se/database/masses/	Quclear structure and decay data NuBase with the Q-value calculator
http://www.nndc.bnl.gov/ensdf/	Evaluated nuclear structure data file (ENSDF)
http://www.nndc.bnl.gov/nudat2/	Nuclear structure and decay data
http://www.nndc.bnl.gov/masses/mass.mas03	Atomic mass adjustment 2003
http://www.tunl.duke.edu/NuclData/	Energy levels of light nuclei, A=3-20
http://www-nds.iaea.org/ibandl/	IBA nuclear data library (IBANDL)
$\underline{\text { http://www-nds.iaea.org/exfor/ }}$	Experimental nuclear reaction data (EXFOR)
http://www-nds.iaea.org/sigmacalc/	Evaluated differential cross sections for IBA (SigmaCalc)

Summary

We have discussed:

What nucleus is.
How a projectile interacts with a nucleus.
How quantum mechanics depicts the projectile-nucleus interaction.
What mechanisms of nuclear reactions exist.
How theoretical models are applied to describe the projectile-nucleus interaction.
Nuclear reaction kinematics

