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Outline
� Introduction
� Transistors
� The CMOS inverter
� Technology
� Scaling
� Gates
� Sequential circuits
� Storage elements
� Phase-Locked Loops

– PLL overview
– Building blocks:
– PLL analysis:
– PLL simulation with Verilog

� Example
Complete set of slides and notes on DLLs and PLLs can be found in:
http://paulo.moreira.free.fr/microelectronics/padova/padova.htm
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Why Phase-Locked Loops?

Ext. CLK Clock
pad

PLL

clock route

Q Output
pad

Int. CLK
IC

4

External clock

Internal clock

Output data

Phase aligned

Output data registers delay

Clock buffers and
interconnects
introduce delay

The PLL automatically nulls the
phase and frequency difference
between these two points

Internal clock

Frequency here 4 times
the external clock frequency

yyyy
Clock skew control and frequency multiplication
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PLL Block Diagram

� Loop filter (LF):
– Eliminates the high frequency components 

of the error signal
– Introduces a loop-stabilizing zero 
– It can be implemented as:

� An RC low-pass filter
� An active low-pass filter
� A charge-pump a resistor and a capacitor

� Voltage Controlled Oscillator (VCO):
– As the name indicates is an oscillator 

whose frequency is controlled by a 
voltage: fout = F(Vcontrol)

– Sometimes the control quantity can be a 
current. In this case we have a Current 
Controlled Oscillator (CCO)

– We will assume that the higher the 
voltage (or the current) the higher the 
frequency

� Phase-Locked Loop functional 
blocks

� Phase Detector (PD):
– Compares the phase of the reference 

signal to the VCO phase
– Depending on the type, produces an error 

signal:
� Proportional to the phase difference 

between the input and output phases;
� Gives just an indication on the sign of the 

phase error (bang-bang detector).
– Phase detectors can be also frequency 

sensitive; in this case they are called 
Phase-Frequency Detectors (PFD).

Phase
Detector

1st order

f

Error
Signal

Frequency
Control VCO

Reference

Out
LF
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PLL Basic Operation

Phase
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1st order
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Error
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Control VCO
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�in(t)

�err(t) ���in(t)- �out(t)

��err(t)> �out(t)
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Starved Inverter VCO

Vdd

out

Vcontrol

Ibias

Imin

The VCO is an oscillator
� The oscillation frequency depends on the control voltage
� It is usually modeled as:

0)()( ftVKtf cntvco ���
)(1)( sV

s
Ks cntvco ����

	 ����
t

dttft
0

0)()(

Practical advice:
� An odd-number of inverters is mandatory;
� Always buffer the output signal;
� Ensure a minimum oscillation frequency;
� Preferably use a minimum of 3 inverters.

The VCO behaves as
a phase integrator
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VCO Transfer function
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VCO - Run: 18/09/2000 (Extraction model: close interconnect), Fit order = 3
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Target operation
frequency: 800 MHz

Kvco = -1.17 GHz/V

Kvco = -2.36 GHz/V

Kvco = -3.72 GHz/V
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Phase Frequency Detector
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PFD: Frequency sensitivity
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PFD Characteristics
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Active Filter: Charge-Pump + RC network
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Charge Pump Implementation
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Charge Pump Operation
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Charge-Pump PLL with PFD
Assume the PLL is locked �in = �out:
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A Second Order System
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Compensating zero
time constant

Natural frequency

Damping factor

Loop gain

Any two of these
parameters define
the linearized,
time-averaged
behavior of the
PLL

The loop is second order

A zero appears in the transfer function:
It is used to compensate the PLL response
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PLL Stability
Open-loop transfer function:
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Jitter Peaking
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will exceed unity. Jitter frequencies within
this band will be amplified

To minimize jitter peaking keep the first closed-loop
pole next to the zero by using high loop gains
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PLL Modeling with Verilog
Verilog � Hardware description language for digital circuits
Used for:
• Hardware description
• Hardware simulation
• Source code for logic compilers

r

v

u

d

Charge-Pump
and

Loop-Filter
VCO

÷M

reference
32

VCO delay controlled by a
32 bit number to match
the analogue precision

(digital)(analogue + digital)(digital)

(digital) Analogue is modeled
inside with real variables

Algorithm:

• Slice the time in very thin intervals (much smaller than Tvco)

• Make the time advance in these time increments

• At every time increment do:

• Update the phase detector outputs

• Calculate the new filter voltage according to the phase detector state

• Update the VCO frequency as function of the filter voltage
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Phase Detector and VCO

`timescale 1 fs / 1 fs

module ThreeStatePD (down, up, r, v);

output
down, // Early signal
up; // Late signal

input
r, // Reference input
v; // VCO input

wire r, v, reset;

reg up, down;

initial
begin
up = 0;
down = 0;
end

always @ (posedge r)
up <= #1 1'b1;

always @ (posedge v)
down <= #1 1'b1;

always @ (posedge reset)
begin
up   <= #1 1'b0;
down <= #1 1'b0;
end

assign #1

reset = up & down;

endmodule

Phase Frequency Detector

`timescale 1 fs / 1 fs
module VCO( delay_control,  vco_output);
input[31:0] delay_control;
output vco_output;
reg reset;

initial begin
reset=1;
#100000;
reset=0;
end

delay_element10
delay1( .in(~vco_output & ~reset), .delay_control(delay_control),

.out(tap1)), 
delay2( .in(tap1), .delay_control(delay_control), .out(tap2)),
delay3( .in(tap2), .delay_control(delay_control), .out(tap3)),
delay4( .in(tap3), .delay_control(delay_control), .out(vco_output));

endmodule

// ------------------------------------------------------------------------- //
`timescale 1 fs / 1 fs
module delay_element10( in, delay_control, out);
input in;
input[31:0] delay_control;
output out;
reg out;
initial

out = 1'b0;

always @(in)
begin
out <= #( delay_control/8 ) in; // delay = 

delay_control/(2*number_of_delay_cells);
end

endmodule

VCO

Cell delay is controlled here

Ring oscillator with delay control

Delay control: 32 bit number
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Loop Filter Simulation: R-C filter
� Simulation step: tn = tn-1 +�t
� The current I(t)

– It is “imposed” on the circuit (it is the independent variable)
– It is controlled by the phase-detector output

� For accuracy the time advances in small increments �t:
– Capacitor voltages change very little during a simulation step
– The time integral of a function in the interval tn-1 to tn can be 

approximated by:

� For the simple R-C filter:

� Simulation equations:

I(t)

R

C

V control

Vcap

ttfdttf n

t

t

n

n

��� �	
�

)()( 1

1

)()()( ncapnncontrol tVtIRtV ���

	
�

�� �

n

n

t

t
ncapncap dttI

C
tVtV

1

)(1)()( 1

ttI
C

tVtV nncapncap ����� �� )(1)()( 11

Notice that the time increments
don’t need to be constant (they
have to be small). In that case,
replace in the equation �t
by: �tn = tn – tn-1

10100
VCOVCO TtT

���

Typically

[1]

[2]

[3]

[4]

)()()( ncapnncontrol tVtIRtV ��� [5]
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Charge Pump & Loop Filter

`timescale 1 fs / 1 fs
module ChargePump(up, down, delay_control);
.
.
.

`define DeltaVProportional (`Icp * `Rfilt)/1.0E-3        // PLL proportional term (in mV)
`define DeltaVIntegral (`Tref * `Icp / `Cfilt)/1.0E-3   // PLL integral term (in mV)
.

.

.

.

real dv_capacitor, // Differential capacitor voltage (in mV)
control_voltage, // Integral plus proportional control voltage (in mV)
frequency, // VCO frequency (in GHz)
period, // VCO period (in ns)
integral_term, // loop control integral term (in mV)
direct_term; // loop control proportional term (in mV)

initial
begin

.

.

.

integral_term = `DeltaVIntegral/`IntegrationPoints;
direct_term = `DeltaVProportional;
integral_evaluation_time = 25000000/`IntegrationPoints;
end

.

.

.

Variables used in ‘analogue’ computations declared as real

Charge-Pump (includes the loop filter)



Paulo Moreira plls 21

Charge Pump

always
begin
if ( ~reset )

begin
// The integral and proportional terms are expressed as voltages
if (up) // Up refers to frequency not voltage

begin
if (`InitialFilterVoltage + dv_capacitor > `MinimumFilterVoltage)

dv_capacitor = dv_capacitor - integral_term;
end

if (down) // Up refers to frequency not voltage
begin
if (`InitialFilterVoltage + dv_capacitor < `MaximumFilterVoltage)

dv_capacitor = dv_capacitor + integral_term;
end

end
if ((~up & ~down) | (up & down))

control_voltage = `InitialFilterVoltage + dv_capacitor;
else if (up)

control_voltage = `InitialFilterVoltage + (dv_capacitor - direct_term);
else if (down)

control_voltage = `InitialFilterVoltage + (dv_capacitor + direct_term);
frequency = `C0 + control_voltage*(`C1 + control_voltage*(`C2 +control_voltage*`C3));
period = 1.0/frequency;
DelayControl = period*1e6; // first convert the real into an integer
#(integral_evaluation_time);

end
assign

/* The variable "delay_control" represents the ring oscillator period in fs */
#1 delay_control = DelayControl + vco_phase_noise;

endmodule

Main loop, runs at
regular time intervals

Calculate capacitor
voltage increment

Time step control

Update the 
capacitor voltage

Add VCO phase noise

Update the VCO period
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Simulation Example
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Loop Filter Simulation: (R-C)||C filter

� The filter equations are:

I(t)

R

C1
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Loop Filter Simulation: (R-C)||C filter

� Using the same 
approximations as before:

[7]

[8]
1

11
111
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ttItVtV n
nn

��
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111
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�

I(t)

R

C1

V2

V1

C2

I1(t) I2(t)

[9]

10100
VCOVCO TtT

��� Time increment guideline:
• Simulation speed �T = TVCO/10
• Simulation accuracy �T = TVCO/100
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