
2177-9

ICTP Latin-American Basic Course on FPGA Design for Scientific
Instrumentation

MOREIRA Paulo Rodrigues S.

15 - 31 March 2010

CERN
Geneva

Switzerland

Phase-Locked Loops

Paulo Moreira plls 1

Outline
� Introduction
� Transistors
� The CMOS inverter
� Technology
� Scaling
� Gates
� Sequential circuits
� Storage elements
� Phase-Locked Loops

– PLL overview
– Building blocks:
– PLL analysis:
– PLL simulation with Verilog

� Example
Complete set of slides and notes on DLLs and PLLs can be found in:
http://paulo.moreira.free.fr/microelectronics/padova/padova.htm

Paulo Moreira plls 2

Why Phase-Locked Loops?

Ext. CLK Clock
pad

PLL

clock route

Q Output
pad

Int. CLK
IC

4

External clock

Internal clock

Output data

Phase aligned

Output data registers delay

Clock buffers and
interconnects
introduce delay

The PLL automatically nulls the
phase and frequency difference
between these two points

Internal clock

Frequency here 4 times
the external clock frequency

yyyy
Clock skew control and frequency multiplication

Paulo Moreira plls 3

PLL Block Diagram

� Loop filter (LF):
– Eliminates the high frequency components

of the error signal
– Introduces a loop-stabilizing zero
– It can be implemented as:

� An RC low-pass filter
� An active low-pass filter
� A charge-pump a resistor and a capacitor

� Voltage Controlled Oscillator (VCO):
– As the name indicates is an oscillator

whose frequency is controlled by a
voltage: fout = F(Vcontrol)

– Sometimes the control quantity can be a
current. In this case we have a Current
Controlled Oscillator (CCO)

– We will assume that the higher the
voltage (or the current) the higher the
frequency

� Phase-Locked Loop functional
blocks

� Phase Detector (PD):
– Compares the phase of the reference

signal to the VCO phase
– Depending on the type, produces an error

signal:
� Proportional to the phase difference

between the input and output phases;
� Gives just an indication on the sign of the

phase error (bang-bang detector).
– Phase detectors can be also frequency

sensitive; in this case they are called
Phase-Frequency Detectors (PFD).

Phase
Detector

1st order

f

Error
Signal

Frequency
Control VCO

Reference

Out
LF

Paulo Moreira plls 4

PLL Basic Operation

Phase
Detector

1st order

f

Error
Signal

Frequency
Control VCO

Reference

Out

�in(t)

�err(t) ���in(t)- �out(t)

��err(t)> �out(t)

LF

Paulo Moreira plls 5

Starved Inverter VCO

Vdd

out

Vcontrol

Ibias

Imin

The VCO is an oscillator
� The oscillation frequency depends on the control voltage
� It is usually modeled as:

0)()(ftVKtf cntvco ���
)(1)(sV

s
Ks cntvco ����

	 ����
t

dttft
0

0)()(

Practical advice:
� An odd-number of inverters is mandatory;
� Always buffer the output signal;
� Ensure a minimum oscillation frequency;
� Preferably use a minimum of 3 inverters.

The VCO behaves as
a phase integrator

Paulo Moreira plls 6

VCO Transfer function

-1500 -1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600
0

0.5

1

1.5

2

2.5

3

3.5

Control voltage (mv)

Fr
eq

ue
nc

y
(G

Hz
)

VCO - Run: 18/09/2000 (Extraction model: close interconnect), Fit order = 3

=-1.5, T=125C, Vdd=2.25V

=0, T=25C, Vdd=2.5V

=+1.5, T=-55 C, Vdd=2.75V

Target operation
frequency: 800 MHz

Kvco = -1.17 GHz/V

Kvco = -2.36 GHz/V

Kvco = -3.72 GHz/V

Paulo Moreira plls 7

Phase Frequency Detector

QD
late

RST

1

QD
early

RST

1

vco

ref

ref

vco

late

early

1

0
error

VCO lags

Phase error = late - early
Pulse width: proportional to phase error
Sign: > 0 � VCO lags

< 0 � VCO leads

VCO leads

-1

ref

vco

late

early

0
error

Paulo Moreira plls 8

PFD: Frequency sensitivity

ref

vco

late

early

1
0error

VCO fast

-1

ref

vco

late

early

1
0error

VCO slow

-1

Paulo Moreira plls 9

PFD Characteristics

��

Verr

-2-4

2 4

Vdd

-Vdd

Late = 0
Early = 0

Late = 1
Early = 0

Late = 0
Early = 1

ref

ref

ref

vco

vco

vco

Paulo Moreira plls 10

Active Filter: Charge-Pump + RC network

ref

vco

PFD

late

early

Charge
Pump

R

Vcontrol

C

)()()(tVtVtV caprescontrol ��

)()(
2

)(, tearlytlatet err
nerr ���

��

cacapppprescontrol

0
0

,,)(1)()(Vdtt
C

tRItV
t

nerrnerrcpcontrol ��
�

�
�
�

�
���� 	��

Proportional term controlled by ‘R’

Integral term controlled by ‘C’

Current magnitude Icp affects both

� �1,1)(, ��tnerr�

Cs
CRsIsH cpLF �
���

��
1)(

CR
fz ��
�

2
1

Zero at:

Pole at the origin

Infinite gain at DC Independent

Paulo Moreira plls 11

Charge Pump Implementation
Vdd

Icp

M2

M3

M4

M1

M5

late
M6

late

earlyearly

late

late

early

early

R

Vcontrol

C

Paulo Moreira plls 12

Charge Pump Operation
ref

vco

late

early

1t�

2t�

Vcontrol

t

cpP IRV ���
cpP IRV ����

1tC
I

V cp
I ����

2tC
I

V cp
I �����

Paulo Moreira plls 13

Charge-Pump PLL with PFD
Assume the PLL is locked �in = �out:

in

PFD

late

early

Charge
Pump

R

Vcnt

C

VCO

�in , �in �out , �out

�err = �in
- �out

±Icp

Z

in

err
ont �

�
�

‘ON’ time for either ‘Late’ or ‘Early’

The charge delivered in one cycle
is proportional to the phase error �err

in

err
cpIQ
�
�

�

�
2
err

cpd Ii �

Average current
in one cycle

)(
2
)()(sZsIsV err

cpcnt ���

�

Lumped contributions of:
• Phase-Frequency Detector
• Charge-Pump
• Filter impedance

[2]

[1])()()(sss outinerr ��� ��
Phase error

[1]
[2]
[3]

)(2
)(

)(
)(
)(

sZIKs
sZIK

sH
s
s

cpvco

cpvco

in

out

����
��

��
�

�
[4]

VCO phase

)()(sV
s
Ks cnt
vco

out ��� [3]

Kvco in rad/(s.V)

Paulo Moreira plls 14

A Second Order System

Cs
RsZ

�
��
1)([5]

[4]

[5] vcocp

vcocp

KsCRIsC
KsCRI

sH
��������

�����
�

)1(2
)1(

)(2
[6]

[6] can be put in the form:

121
)1()(

2
2 �����

��
�

ss

ssH

nn

z

�
�

�

�
[7]

CRz ���

C
KI vcocp

n �
�

�

�
2

n
CR �� �
�

�
2

��

2
2 vcocp

n
KIR

K
��

����

Compensating zero
time constant

Natural frequency

Damping factor

Loop gain

Any two of these
parameters define
the linearized,
time-averaged
behavior of the
PLL

The loop is second order

A zero appears in the transfer function:
It is used to compensate the PLL response

Paulo Moreira plls 15

PLL Stability
Open-loop transfer function:

s
K

Cs
sI

sH vcozcp
O �

�
��

��
�

1

2
)(

Im

Re

log �

log |HO(s)|

z�
1

(Slope = -2)
Cs

KI
sH vcocp

O �
�� 22

)(

s
K

C
I

sH vcozcp
O ���

�
2

)(

n�
0

C�

(Slope = -1)

Two poles

For acceptable phase margin
Place the zero 1/�z well below �n

��n cross over frequency of
HO(s) if no zero was present)

Increasing K

��

2
2 vcocp

n
KIR

K
��

����

Paulo Moreira plls 16

Jitter Peaking

121
)1()(

2
2 �����

��
�

ss

ssH

nn

z

�
�

�

�

For large damping ratios the zero frequency
is below the closed-loop poles

Over a given band of frequencies, H(s)
will exceed unity. Jitter frequencies within
this band will be amplified

To minimize jitter peaking keep the first closed-loop
pole next to the zero by using high loop gains

log |H(s)|

log �
0

z�
1

Low damping ratio

High damping ratio

Paulo Moreira plls 17

PLL Modeling with Verilog
Verilog � Hardware description language for digital circuits
Used for:
• Hardware description
• Hardware simulation
• Source code for logic compilers

r

v

u

d

Charge-Pump
and

Loop-Filter
VCO

÷M

reference
32

VCO delay controlled by a
32 bit number to match
the analogue precision

(digital)(analogue + digital)(digital)

(digital) Analogue is modeled
inside with real variables

Algorithm:

• Slice the time in very thin intervals (much smaller than Tvco)

• Make the time advance in these time increments

• At every time increment do:

• Update the phase detector outputs

• Calculate the new filter voltage according to the phase detector state

• Update the VCO frequency as function of the filter voltage

Paulo Moreira plls 18

Phase Detector and VCO

`timescale 1 fs / 1 fs

module ThreeStatePD (down, up, r, v);

output
down, // Early signal
up; // Late signal

input
r, // Reference input
v; // VCO input

wire r, v, reset;

reg up, down;

initial
begin
up = 0;
down = 0;
end

always @ (posedge r)
up <= #1 1'b1;

always @ (posedge v)
down <= #1 1'b1;

always @ (posedge reset)
begin
up <= #1 1'b0;
down <= #1 1'b0;
end

assign #1

reset = up & down;

endmodule

Phase Frequency Detector

`timescale 1 fs / 1 fs
module VCO(delay_control, vco_output);
input[31:0] delay_control;
output vco_output;
reg reset;

initial begin
reset=1;
#100000;
reset=0;
end

delay_element10
delay1(.in(~vco_output & ~reset), .delay_control(delay_control),

.out(tap1)),
delay2(.in(tap1), .delay_control(delay_control), .out(tap2)),
delay3(.in(tap2), .delay_control(delay_control), .out(tap3)),
delay4(.in(tap3), .delay_control(delay_control), .out(vco_output));

endmodule

// --- //
`timescale 1 fs / 1 fs
module delay_element10(in, delay_control, out);
input in;
input[31:0] delay_control;
output out;
reg out;
initial

out = 1'b0;

always @(in)
begin
out <= #(delay_control/8) in; // delay =

delay_control/(2*number_of_delay_cells);
end

endmodule

VCO

Cell delay is controlled here

Ring oscillator with delay control

Delay control: 32 bit number

Paulo Moreira plls 19

Loop Filter Simulation: R-C filter
� Simulation step: tn = tn-1 +�t
� The current I(t)

– It is “imposed” on the circuit (it is the independent variable)
– It is controlled by the phase-detector output

� For accuracy the time advances in small increments �t:
– Capacitor voltages change very little during a simulation step
– The time integral of a function in the interval tn-1 to tn can be

approximated by:

� For the simple R-C filter:

� Simulation equations:

I(t)

R

C

V control

Vcap

ttfdttf n

t

t

n

n

��� �	
�

)()(1

1

)()()(ncapnncontrol tVtIRtV ���

	
�

�� �

n

n

t

t
ncapncap dttI

C
tVtV

1

)(1)()(1

ttI
C

tVtV nncapncap ����� ��)(1)()(11

Notice that the time increments
don’t need to be constant (they
have to be small). In that case,
replace in the equation �t
by: �tn = tn – tn-1

10100
VCOVCO TtT

���

Typically

[1]

[2]

[3]

[4]

)()()(ncapnncontrol tVtIRtV ��� [5]

Paulo Moreira plls 20

Charge Pump & Loop Filter

`timescale 1 fs / 1 fs
module ChargePump(up, down, delay_control);
.
.
.

`define DeltaVProportional (`Icp * `Rfilt)/1.0E-3 // PLL proportional term (in mV)
`define DeltaVIntegral (`Tref * `Icp / `Cfilt)/1.0E-3 // PLL integral term (in mV)
.

.

.

.

real dv_capacitor, // Differential capacitor voltage (in mV)
control_voltage, // Integral plus proportional control voltage (in mV)
frequency, // VCO frequency (in GHz)
period, // VCO period (in ns)
integral_term, // loop control integral term (in mV)
direct_term; // loop control proportional term (in mV)

initial
begin

.

.

.

integral_term = `DeltaVIntegral/`IntegrationPoints;
direct_term = `DeltaVProportional;
integral_evaluation_time = 25000000/`IntegrationPoints;
end

.

.

.

Variables used in ‘analogue’ computations declared as real

Charge-Pump (includes the loop filter)

Paulo Moreira plls 21

Charge Pump

always
begin
if (~reset)

begin
// The integral and proportional terms are expressed as voltages
if (up) // Up refers to frequency not voltage

begin
if (`InitialFilterVoltage + dv_capacitor > `MinimumFilterVoltage)

dv_capacitor = dv_capacitor - integral_term;
end

if (down) // Up refers to frequency not voltage
begin
if (`InitialFilterVoltage + dv_capacitor < `MaximumFilterVoltage)

dv_capacitor = dv_capacitor + integral_term;
end

end
if ((~up & ~down) | (up & down))

control_voltage = `InitialFilterVoltage + dv_capacitor;
else if (up)

control_voltage = `InitialFilterVoltage + (dv_capacitor - direct_term);
else if (down)

control_voltage = `InitialFilterVoltage + (dv_capacitor + direct_term);
frequency = `C0 + control_voltage*(`C1 + control_voltage*(`C2 +control_voltage*`C3));
period = 1.0/frequency;
DelayControl = period*1e6; // first convert the real into an integer
#(integral_evaluation_time);

end
assign

/* The variable "delay_control" represents the ring oscillator period in fs */
#1 delay_control = DelayControl + vco_phase_noise;

endmodule

Main loop, runs at
regular time intervals

Calculate capacitor
voltage increment

Time step control

Update the
capacitor voltage

Add VCO phase noise

Update the VCO period

Paulo Moreira plls 22

Simulation Example

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5 x 104

Ph
as

e
Er

ro
r (

ps
)

Time (�s)

Phase Error

Reference phase:
 = 151.4605ps, pp = 931ps
Absolute PLL phase:
 = 30.6819ps, pp = 168ps

Reference abruptly
changes phase by 180º

PLL is locking, starting,
from a ‘wrong’ frequency

PLL couldn’t follow
and it is acquiring
lock again. The
frequency was right
only phase changed

Paulo Moreira plls 23

Loop Filter Simulation: (R-C)||C filter

� The filter equations are:

I(t)

R

C1

V2

V1

C2

I1(t) I2(t)

R
tVtVtI)()()(12

1
�

� [3]

	
�

�� �

n

n

t

t
nn dttI

C
tVtV

1

)(1)()(2
2

122
[2]

	
�

�� �

n

n

t

t
nn dttI

C
tVtV

1

)(1)()(1
1

111 [1]

)()()(12 tItItI �� [4]

[1] & [3] 	
�

��
�

��
� �

�� �

n

n

t

t
nn dt

R
tVtV

C
tVtV

1

)()(1)()(12

1
111

[12],[3] & [4]

[5]

	
�

��
�

��
� �

��� �

n

n

t

t
nn dt

R
tVtVtI

C
tVtV

1

)()()(1)()(12

2
122

[6]

Paulo Moreira plls 24

Loop Filter Simulation: (R-C)||C filter

� Using the same
approximations as before:

[7]

[8]
1

11
111

)()()(
C

ttItVtV n
nn

��
�� �

�

� �
2

111
122

)()()()(
C

ttItItVtV nn
nn

���
�� ��

�

R
tVtVtI nn

n
)()()(1112

11
��

�
�

�

I(t)

R

C1

V2

V1

C2

I1(t) I2(t)

[9]

10100
VCOVCO TtT

��� Time increment guideline:
• Simulation speed �T = TVCO/10
• Simulation accuracy �T = TVCO/100

Paulo Moreira plls 25

0 0.2 0.4 0.6 0.8 1

-10

0

10

t [�s]

i cp
 [�

A]

Discrete Model Simulation

0 0.2 0.4 0.6 0.8 1
0.46

0.48

0.5

0.52

0.54

t [�s]

V 1, V
2 [V

]

V1V2

0 0.2 0.4 0.6 0.8 1

-10

0

10

t [�s]

i cp
 [�

A]
SPICE Simulation

0 0.2 0.4 0.6 0.8 1
0.46

0.48

0.5

0.52

0.54

t [�s]

V 1, V
2 [V

]

V1V2

0 0.2 0.4 0.6 0.8 1
0.46

0.48

0.5

0.52

0.54

t [�s]

V 1 [V
]

SPICE vs Discrete Model

spice
model

0 0.2 0.4 0.6 0.8 1
0.46

0.48

0.5

0.52

0.54

t [�s]

V 2 [V
]

spice
model

0 0.2 0.4 0.6 0.8 1
0.46

0.48

0.5

0.52

0.54

t [�s]

V 1 [V
]

SPICE vs Discrete Model

spice
model

0 0.2 0.4 0.6 0.8 1
0.46

0.48

0.5

0.52

0.54

t [�s]

V 2 [V
]

spice
model

SPICE versus Model

00000

�T = tcp/3

00000

�T = tcp/10

tcp

