

2177-12

ICTP Latin-American Basic Course on FPGA Design for Scientific Instrumentation

15 - 31 March 2010

Introduction to Digital Design

BAZARGAN SABET Pirouz LIP6, University Pierre et Matie Curie Paris France

Introduction to Digital Design

Pirouz Bazargan Sabet

University of Paris 6 - LIP6 - SoC

Pirouz.Bazargan-Sabet@lip6.fr

Outline

- Digital CMOS design
- Arithmetic operators
- Sequential functions

Outline

- Digital CMOS design
 - ─ Boolean algebra
 - ─ Basic digital CMOS gates
 - ─ Combinational and sequential circuits
 - ─ Coding Representation of numbers

English mathematician 1815 - 1864

1854: Introduction to the Laws of Thought

 \bigcirc Let B = {0, 1}

B is called the Boolean setO, 1 are the Boolean constants

x is a Boolean variable

Unary functions : B → B

Pirouz Bazargan Sabet

Unary function θ : $\forall x \in B, x \mapsto O$

Unary function $I: \forall x \in B, x \mapsto 1$

Unary function *Identity*: $\forall x \in B, x \mapsto x$

Unary function Not: $O \mapsto 1$ $1 \mapsto O$

Not (x) is denoted \overline{x}

 \bigcirc Binary functions : $B^2 \longrightarrow B$

function And:

 $\forall x, y \in B$, And (x, y) = 1 if and only if x = 1 and y = 1

And (x, y) is also called Min is denoted x.y

function *Or* :

 $\forall x, y \in B$, Or(x, y) = O if and only if x = O and y = O

Or(x, y) is also called Max is denoted x+y

Other binary functions can be defined using *And*, *Or* and *Not*

function Nand: Nand(x, y) = Not(And(x, y))

function Nor: Nor(x, y) = Not(Or(x, y))

function Xor: $Xor(x, y) = x.\overline{y} + \overline{x}.y$

Xor(x, y) is denoted $x \oplus y$

Noticeable properties

$$Not (Not (x)) = x$$
 $= x$

$$X.X = X$$

$$X+X = X$$

$$x \oplus x = 0$$

$$x.\overline{x} = 0$$

$$x + x = 1$$

$$x \oplus \overline{x} = 1$$

$$x.O = O$$

$$x+1 = 1$$

$$x \oplus 1 = \overline{x}$$

$$x.1 = x$$

$$X+O = X$$

$$x \oplus O = x$$

Commutative
$$x.y = y.x$$

$$x+y = y+x$$

$$x \oplus y = y \oplus x$$

Associative
$$x.(y.z) = (x.y).z$$

$$x+(y+z) = (x+y)+z$$

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

Noticeable properties

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$x \cdot (y \oplus z) = x.y \oplus x.z$$

$$x + (y.z) = (x+y) \cdot (x+z)$$

$$\overline{x.y} = \overline{x} + \overline{y}$$

$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

$$\overline{x}.y + x = y + x$$

 \bigcirc Let B = {0,1}

B is called the Boolean set

O, 1 are the Boolean constants

x is a Boolean variable

 \bigcirc Let $v \in B^n$

v is a Boolean vector

$$v \in B^n, v = (x_1, ..., x_i, ..., x_n)$$

 $u \in B^n, u = (y_1, ..., y_i, ..., y_n)$

The number of Boolean variables that are different between v and u is called the Hamming distance (v, u)

$$Hd((0,0,0,1),(1,0,1,0)) = 3$$

To vectors are said adjacent when their Hamming distance = 1

$$Hd((0,0,0,1),(1,0,0,1)) = 1$$

Let $B = \{O, 1\}$ B is called the Boolean set

O, 1 are the Boolean constants

Let $v \in B^n$ v is a Boolean vector

Let $f: B^n \longrightarrow B$ f is a Boolean function

B_n is the set of Boolean Functions

$$card(\mathbf{B}_{n}) = 2^{(2^{n})}$$

 \bigcirc Card (Bⁿ) is finite

A Boolean function f may be defined by giving the value f (v) of each Boolean vector v (Truth table)

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- Unary functions : $\mathbf{B}_{n} \rightarrow \mathbf{B}_{n}$ function *Not* : (*Not* (f)) (v) = *Not* (f (v))
- Binary functions : $\mathbf{B}_{\mathfrak{h}}^{2} \rightarrow \mathbf{B}_{\mathfrak{h}}$ function And : (And (f, g)) (v) = And (f (v), g (v))function Or : (Or (f, g)) (v) = Or (f (v), g (v))

$$\forall v \in B^{n}, v = (x_{1}, ..., x_{i'}, ..., x_{n})$$

The Boolean function $f \in \mathbf{B}_n$

$$f(v) = x_i$$
 is denoted x_i

A Boolean function f may be defined by giving a Boolean expression

$$f = \overline{x}.y.z + x.\overline{y}.\overline{z} + x.z$$

$$f = x.\overline{y} + y.z$$

х	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

There is not a unique expression

• Let
$$f \in \mathbf{B}_n$$

$$f = \sum (\alpha_j . (\prod \tilde{x}_i))$$

$$f = \bar{x}.y.z + x.\bar{y}.\bar{z} + x.\bar{y}.z + x.y.z$$
min-term

X	У	Z	f
0	0	0	0
0	0	1	O
0	1	0	0
O	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

• Let
$$f \in \mathbf{B}_n$$

$$f = \prod (\beta_j + \sum \tilde{x_i})$$

$$f = \prod (\beta_j + \sum \tilde{x_i})$$

$$f = (x+y+z) \cdot (x+y+\overline{z}) \cdot (x+\overline{y}+z) \cdot (x+\overline{y}+z)$$

max-term

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

• Let
$$f \in \mathbf{B}_n$$

f is said independent from

the variable x_i

$$\forall v \in B^n, v = (x_1, ..., x_i, ..., x_n)$$

$$f(x_1, ..., x_i, ..., x_n) = f(x_1, ..., \overline{x_i}, ..., x_n)$$

• Let
$$f \in \mathbf{B}_n$$

 $\exists ! f_{iO}$, f_{i1} independent from the variable x_i

$$f = x_i \cdot f_{i1} + x_i \cdot f_{i0}$$

Shannon decomposition

• Let
$$f \in \mathbf{B}_n$$

$$f = x_i \cdot f_{i1} + \overline{x_i} \cdot f_{i0}$$

$$f = x.(\overline{y}+z) + \overline{x}.(y.z)$$

X	У	Z	f
0	0	0	0
0	0	1	0
O	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Let
$$f = x_i \cdot f_{i1} + \overline{x_i} \cdot f_{i0}$$

if f is independent from the variable x_i f = f_{iO} = f_{i1}

$$f_{iO} \oplus f_{i1} = O$$

if $f_{iO} \oplus f_{i1} = O$ then f is insensitive to x_i

notion of derivative

Let
$$f = x_i \cdot f_{i1} + \overline{x_i} \cdot f_{i0}$$

$$\frac{\partial f}{\partial x_i} = f_{iO} \oplus f_{i1}$$

Let
$$f = x_i \cdot f_{i1} + \overline{x_i} \cdot f_{i0}$$

f may be sensitive to x_i in two ways

$$\frac{\partial f}{\partial x_i} = f_{i1}.f_{i0} + (f_{i1}.f_{i0})$$

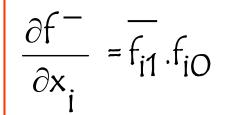
 $f_{i1}.f_{i0}$ and $f_{i1}.f_{i0}$ cannot be 1 for the same vector

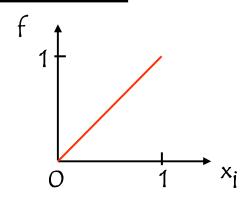
$$\oint f = x_i \cdot f_{i1} + \overline{x_i} \cdot f_{i0} \qquad \frac{\partial f}{\partial x_i} = f_{i1} \cdot \overline{f_{i0}} + \overline{f_{i1}} \cdot f_{i0}$$

if $f_{i1}.\overline{f_{iO}}(v) = 1$, f varies in a direct way with x_i f is a positive function of x_i

if $f_{i1}.f_{i0}(v) = 1$, f varies in an opposite way with x_i f is a negative function of x_i

$$\frac{\partial f^{+}}{\partial x_{i}} = f_{i1}.f_{i0}$$





$$\frac{\partial f^{-}}{\partial x_{i}} = \overline{f_{i1}}.f_{i0}$$

