

2177-24

ICTP Latin-American Basic Course on FPGA Design for Scientific Instrumentation

15 - 31 March 2010

ALICE Silicon Pixel Trigger

KLUGE Alexander CERN Geneva Switzerland

ALICE Silicon Pixel Trigger

presented by A. Kluge CERN/PH-ESE March 17, 2009

Slides by G. Aglieri Rinella^a, A. Kluge^a,

^a CERN, Geneva Switzerland

A. Kluge G. Aglieri Rinella

120 x half staves each 10 bit fastOr

Silicon Pixel Trigger

- Front end chip provides prompt FastOR
- Active if at least one pixel in the chip is hit
- Transmitted every 100 ns
- 10 FastOR bits transmitted on each readout fiber -> 120 fibers * 10 * 10 MHz = 12 Gb/s A. Kluge G. Aglieri Rinella

Frontend

- Dedicated FastOR circuitry follows synchronizer
- Two data streams
- High resolution pixel detector
- Low latency PAD detector
- 1200 pads of 13x14 mm2

Silicon Pixel Trigger block diagram

Algorithms

- Pre-process low latency Fast-OR and generate primitives for the Level o trigger decision
 - Proton-proton
 - Minimum bias
 - High multiplicity trigger
 - Topological trigger (jets)
 - Heavy ions
 - Selection of impact parameter
- Algorithms
 - Boolean functions of 1200 bits
 - Look up tables
 - Occupancy (multiplicity)

Pixel Trigger Cosmic Algorithm

Can be selected from Control Room out of the following

- TOP_outer and BOTTOM_outer
- OR_OUTER and OR_INNER
- DLAYER (\geq_2 FOs in the INNER and \geq_2 FOs in the OUTER)
- TOP_outer and BOTTOM_outer and TOP_inner and BOTTOM_inner
- TOP_outer and BOTTOM_outer and OR_INNER
- GLOBAL_OR

Advanced trigger algorithms

- Combinational (boolean AND/OR) functions of 1200 Fast-OR bits
 - Occupancy (multiplicity)
 - Coincidence trigger (topology)
- Not possible: iterative algorithms on data set

Example: vertex trigger

- Pseudo-Tracklet: one chip hit on inner and one on outer layer, in line with region +/-10 cm around vertex
- Chip map for pixel trigger electronics calculated from simulation: (L11,L21), (L12, L22), ..., (L1n, L2n)
- FPGA looks for at least 1 out of 11000 pseudo-tracklets
 - Processing time 12.4 ns (Xilinx ISE)
 - 4% of FPGA resources (Xilinx ISE)
- FPGA counts how many out of 11000 tracklets are present
 - ~27 ns processing time (Xilinx ISE)
 - 5% of FPGA resources (Xilinx ISE)

ALICE Technical Forum. gianluca.aglieri.rinella@cern.ch

Pixel trigger system

- Extract and synchronize 1200
 FastOR bits every 100 ns
- Process algorithm
- User defined and programmable
- Transmit result

- Overall latency 850 ns
- Bottleneck is deserialization
- Independent from the data readout electronics
- Space constraint (one 9U crate)

OPTIN card

- 12 Channels
- Custom Parallel Optical Receiver Module
- 12 G-Link deserializer ASICs closely packed
- FPGA (6ok logic cells)

A. Kluge G. Aglieri Rinella

Optin board channels

 FastOR extraction, masking, time alignment

 Data quality checks: counters and histograms

processing board - BRAIN

A. Kluge

Pixel trigger crate

A. Kluge

Bit error rate test

	Duration	N _{bits}	Errors	BER (99% c. l.)
Typical	1.5 hrs	5.7·10 ¹²	0	< 8.1·10 ⁻¹³
Max	17.8 hrs	7.7·10 ¹³	0	< 6 ·10 ⁻¹⁴

- Full Fast OR data path Bit Error Rate test
- 12 channels in parallel, pseudo random data
- Optical power: -18.5 dBm, o.5 dBm margin

A. Kluge G. Aglieri Rinella

- Remote reconfiguration of the FPGA
- Automatic configuration from database
- Advanced algorithms
- Diagnosis tools (snapshot memory)

Latency

Measurement in the laboratory

In ALICE:

733 + 16 (longer fibers) + 25 (wire to CTP) =**774 ns**

From Bunch Crossing

- MIN 724 ns
- MAX 824 ns
- Uncertainty of +- 12.5 ns
 - Needs fine clock tuning with beam

30/10/2008 ALICE Technical Forum. gianluca.aglieri.rinella@cern.ch

Overall latency

gianluca.aglieri.rinella@cern.ch

Latency

30/10/2008 ALICE Technical Forum. gianluca.aglieri.rinella@cern.ch

Frames aligned

A side

FO

0

FO

Fb

L1 FB

FO

FO

FO

0 **FO**

3

2

Fb(n+

Fb(n+1)

Installation in ALICE

Cosmic ray detection

LHC beam injection test

- August 2008: ALICE SPD was recording data self-triggering via the Pixel Trigger System
- The first "LHC related particles" were detected

Beam events

Events from LHC circulating beam
 11th September 2009

A. Kluge

Silicon Pixel Trigger References

- G. Aglieri Rinella et al., "The Level o Pixel Trigger system for the ALICE experiment", Journal of Instrumentation JINST 2P01007 and Proceedings of the 12th Workshop on Electronics for LHC and Future Experiments, LECC06, September 2006, Valencia, Spain
- A. Kluge et al., "The ALICE Silicon Pixel Detector", Nuclear Instruments and Methods A, Volume 582, Issue 3, 1 December 2007, Pages 728-73
- ALICE collaboration, "ALICE physics Performance Report", CERN-LHCC-2003-049, J. Phys., G30 (2004) 1517-1763
- J. Conrad et al., "Minimum Bias Triggers in Proton-Proton collisions with the VZERO and Silicon Pixel Detectors", ALICE Internal note, ALICE-INT-2005-025, 19/10/2005