Computational study of optical and structural properties of an organic dye sensitized solar cell

Ralph Gebauer
ICTP
Trieste
Italy
Computational study of optical and structural properties of an organic dye sensitized solar cell

Ralph Gebauer

Thursday, January 13th, 2011
Overview

• Nanostructured photovoltaic devices (Grätzel cells)

• Application of TDDFT to such systems
 • computational approach
dry system
 including (explicit) solvent
 averaging over MD in presence of solvent

• Dye adsorption/desorption in presence of explicit solvent
Sensitized semiconductor surfaces as photovoltaic devices

Idea (Graetzel solar cells):

\[\text{ENERGY} \]
\[\text{e}^- \rightarrow \text{excited state} \]
\[\text{hv} \]
\[\text{ground state} \]
\[\text{conduction band} \]
\[\text{valence band} \]

\text{semiconductor TiO}_2

\text{surface complex}
Functioning of a Grätzel cell

Figure 3 Schematic of operation of the dye-sensitized electrochemical photovoltaic cell. The photoanode, made of a mesoporous dye-sensitized semiconductor, receives electrons from the photo-excited dye which is thereby oxidized, and which in turn oxidizes the mediator, a redox species dissolved in the electrolyte. The mediator is regenerated by reduction at the cathode by the electrons circulated through the external circuit. Figure courtesy of P. Bonhôte/EPFL-LPL.

Various dyes

Figure 3. Spectral response curve of the photocurrent for the DYS sensitized by N3 and the black dye. The incident photon to current conversion efficiency is plotted as a function of wavelength.
Our system: Squaraine on TiO$_2$ slab

Slab geometry:
1x4 TiO2 anatase slab, Exposing (101) surface

PBE functional, PW basis set (Quantum-ESPRESSO code)

Shown here: minimum energy configuration
TiO2 slab with squaraine dye

PDOS

Fermi Energy

Energy [eV]
TDDFT treatment of model system

• Adiabatic PBE functional

• Recursive Lanczos algorithm for TDDFT:
 Ideally suited for
 • large systems
 • broad spectral region,
 • large basis set
Linear response formalism in TDDFT:

\[
\omega \delta \psi^+_v(r) = \left(H_{KS}^0 - \epsilon^0_v \right) \delta \psi^+_v + \hat{P}_c \left(\delta V_{SCF}^+(r) + V_{pert}(r) \right) \psi^0_v(r)
\]

\[
-\omega \delta \psi^-_v(r) = \left(H_{KS}^0 - \epsilon^0_v \right) \delta \psi^-_v + \hat{P}_c \left(\delta V_{SCF}^-(r) + V_{pert}(r) \right) \psi^0_v(r)
\]

Now define the following linear combinations:

\[
x_v(r) = \frac{1}{2} (\delta \psi^+_v(r) + \delta \psi^-_v(r))
\]

\[
y_v(r) = \frac{1}{2} (\delta \psi^+_v(r) - \delta \psi^-_v(r))
\]
\[(\omega - \mathcal{L}) |x, y\rangle = |0, v\rangle\]

\[
\mathcal{L} = \begin{pmatrix}
0 & D \\
K & 0
\end{pmatrix}
\]

With the following definitions:

\[
D |x\rangle = \left\{ (H_{KS}^0 - \epsilon_i) x_i(r) \right\}
\]

\[
K |x\rangle = \left\{ (H_{KS}^0 - \epsilon_i) x_i(r) + \psi_i^0(r) \sum_j \int dr' f_{Hxc}(r, r') \psi_j^0(r') x_i(r') \right\}
\]

\[
\begin{pmatrix}
0 & D \\
K & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix}
= \omega
\begin{pmatrix}
x \\
y
\end{pmatrix}
\]
Consider an observable A:

$$A(t) = \sum_i \left(\langle \delta \psi_i(t) | \hat{A} | \psi_i^0 \rangle + \langle \psi_i^0 | \hat{A} | \delta \psi_i(t) \rangle \right)$$

Its Fourier transform is:

$$\tilde{A}(\omega) = \sum_i \left(\langle \psi_i^0 | \hat{A} | \delta \psi_i^-(\omega) \rangle + \langle \psi_i^0 | \hat{A} | \delta \psi_i^+(\omega) \rangle \right)$$

$$= \sum_i 2 \langle \psi_i^0 | \hat{A} | x_i(\omega) \rangle$$

$$= 2 \langle \alpha, 0 | x, y \rangle$$
\[\tilde{A}(\omega) = \sum_i \left(\langle \psi_i^0 | \hat{A} | \delta \psi_i^-(\omega) \rangle + \langle \psi_i^0 | \hat{A} | \delta \psi_i^+(\omega) \rangle \right) \]
\[= 2 \sum_i \langle \psi_i^0 | \hat{A} | x_i(\omega) \rangle \]
\[= 2 \langle a, 0 | x, y \rangle \]

Recall: \((\omega - \mathcal{L}) | x, y \rangle = | 0, \nu \rangle \)

Therefore:

\[\tilde{A}(\omega) = 2 \langle a, 0 \mid (\omega - \mathcal{L})^{-1} \mid 0, \nu \rangle \]

Thus in order to calculate the spectrum, we need to calculate one given matrix element of \((\omega - \mathcal{L})^{-1}\).
Use a recursion to represent \(L \) as a tridiagonal matrix:

\[
L = \begin{pmatrix}
 a_1 & b_1 & 0 \\
 c_1 & a_2 & b_2 \\
 0 & c_2 & a_3 & b_3 \\
 & & \ddots & \ddots & \ddots & b_{N-1} \\
 & & & & c_{N-1} & a_N
\end{pmatrix}
\]

And the response can be written as a continued fraction!

\[
\tilde{A}(\omega) = 2 \langle a, 0 \mid (\omega - L)^{-1} \mid 0, v \rangle = \frac{1}{\omega - a_1 + b_2 \frac{1}{\omega - a_2 + \cdots + c_2}}
\]
Convergence of the TDDFPT spectrum

Isolated squaraine molecule

![Graph showing convergence of the TDDFPT spectrum](image_url)
Charge response at main absorption peak:
Main features:

Recursive Lanczos technique allows to compute TDDFT spectra:

• Rather fast (even in large systems)
• Over broad spectral region
• No virtual KS states required
• Allows to analyze particular features of a spectrum

(use of this "turboTDDFT" code will be part of next week's hands-on tutorial)
Experimental and TDDFT absorption spectra

(a)

I(ω)

Energy [eV]

Experiment

(b)

I(ω)

Energy [eV]

Computation
Analyzing the various transitions
A more realistic system: Including the solvent
TDDFT calculation of optical spectra and related quantities

Various challenges:

• System is large (429 atoms, 1.666 electrons, 181.581 PWs, resp. 717.690 PWs)
• Broad spectral region of interest
• Many excited states in spectral region

Computational tool:

• Recursive Lanczos algorithm for TDDFT
TDDFT optical spectrum: dry system

\[\text{Im } \alpha_{zz}(\omega)\]

- \(\omega_1\)
- \(\omega_2\)
- \(\omega_3\)
- \(\omega_4\)

Energy [eV]
TDDFT optical spectrum including solvent

\[\text{Im } \alpha_{zz}(\omega) \]

- Squaraine on TiO\(_2\) in vacuum
- Squaraine on TiO\(_2\) in water

\[\omega_1, \omega_2, \omega_3, \omega_4 \]

Energy [eV]
Including the solvent in MD and TDDFT computations

• Solvent is treated at the same level of theory as molecule and surface slab

• **Solvent changes electrostatic conditions (dielectric constant …)**

• Solvent participates actively:
 - in formation surface dipoles, etc.
 - hydrogen bonding networks
 - is essential for geometry of solute
Squaraine on \(\text{TiO}_2 \)

Simulation in explicit water

Absorption vs. energy [eV]
Squaraine on TiO$_2$
Simulation in explicit water

Absorption vs. energy [eV]

- Black line: MD averaged simulation
- Red line: experiment
Squaraine on TiO$_2$

Simulation in explicit water

Absorption vs. energy [eV]

- Black line: MD averaged simulation
- Red line: experiment
- Green line: no MD average
Energy level fluctuations and electron injection driving force

![Graph showing energy level fluctuations over time with specific energy values marked: 0.55, 0.67, 1.38, and 1.29.](image)
Squaraine adsorption on TiO$_2$
Dye desorption steps:
Conclusions

• TD-DFT study of squaraine dye adsorbed on TiO$_2$ slab

 Fair agreement with experiment in absence of solvent in computation

• Including the solvent explicitly

 Improvement of computed spectrum, but important features are not reproduced (shoulders, etc.)

• Molecular dynamics of dye sensitized slab with explicit solvent

 Averaging of optical properties over many configurations leads to a description of optical properties in good agreement with experiment

• Very efficient implementation of TD-DFT for large systems/basis sets

 Recursive Lanczos TDDFT based on time-dependent DFPT for a system composed of 429 atoms and described by $\approx 200,000$ PWs
Thanks to:

• Filippo De Angelis (Perugia)
• Stefano Baroni (SISSA & DEMOCRITOS, Trieste)
• Brent Walker (University College, London)
• Dario Rocca (UC Davis)
• O. Baris Malcioglu (Univ. Liège)
• Quantum ESPRESSO and its community

To know more: