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[ Introduction

[ Linking optical and digital image processing
- Principles of discrete representation of signal transformations
- Discrete representations of imaging transforms

1 Examples of computational imaging :
— Stabilization and super-resolution in turbulent video

— Image recovery from sparse sampling:
- Discrete sampling theorem
- Signal recovery as an approximation task
- “Compressing sensing” approach

— Imaging without optics: Optics less smart sensors

L Conclusion: computational imaging and evolution of
vision in nature




Mile stones in the history of imaging devices
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Imaging has always been the primary goal of informational optics.
The whole history of optics is a history of creating and perfecting
imaging devices. The main characteristic feature of the latest stage of
the evolution of informational optics is integrating of physical optics
with digital computers. With this, informational optics is reaching its
maturity. It is becoming digital and imaging is becoming
computational.




Image processing capability of
optics:

-Image formation from light wave-front
-Image geometrical transformations

-Image transforms (Fourier & Fresnel)

-Image correlation and convolution with
template

-Image brightness point-wise manipulation
(electro-optics)




New qualities
brought in to imaging systems by digital computers

-Flexibility and adaptability: no hardware modifications are
necessary to reprogram digital computers to solving different
tasks.

-Digital computers integrated into optical imaging systems
enable them to perform any operations needed and not only
element-wise and integral signal transformations, such as
spatial and temporal Fourier analysis, signal convolution and
correlation that are characteristic for analog optics. This
removes the major limitation of analog optical information
processing.

-Acquiring and processing quantitative data contained in
optical signals and connecting optical systems with other
informational systems and networks is most natural when data
are handled in a digital form.




Digital vs analog imaging:
a tradeoff between good and bad features.

The fundamental limitation of digital signal processing is
the speed of computations. What optics does in parallel and
with the speed of light, computers perform as a sequence of
very simple logical operations with binary digits, which is
fundamentally slower whatever the speed of these
operations is.

Optimal design of image systems requires appropriate
combination of analog and digital processing using
advantages and taking into consideration limitations of

both.




Linking optical and digital
image processing

Marriage analog electro-optical and
digital processing requires appropriate
linking analog and digital signals and
transformations.




The consistency and mutual correspondence principle
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-Digital processors incorporated into optical information systems should be regarded
and treated together with signal discretization and reconstruction devices as
integrated analog units and should be specified and characterized in terms of
equivalent analog transformations.

-Discrete transformation corresponds to its analog prototype if both act to transform
identical input signals into identical output signals.

-Discrete representation of signal transformations should parallel that of signals.




SIGNAL DIGITIZATION

General quantization:

-Splitting signal space into equivalence cells

-Mapping signal space into a set of natural numbers
-Associating each number with a “representative’ signal of the
corresponding equivalence cell

Signal T Equivalency cell
space > L ™

I/ ﬁ

*

* % S
% i
’I ’ ﬁ \\\
d | Y¢-representative signals
*
d ﬁ /ll
*
a *
.\ L

|
|
W
|I
R
%
=< .




SIGNAL DIGITIZATION:
Two step digitization:

»Signal discretization by means of signal
expansion over a set of basis functions

A Zakco,i”(x) 2, = [a(x)p (x)

X
Signal
reconstruction
basis functions

Signal
discretization
basis functions

» Element-wise quantization of the representation
coefficients {¢, }




Signal discretization

Types of discretization basis functions:

-Shift (sampling) basis functions {lp® (x —kAx)}; 10" (x — kAx)}}
-Scaled basis functions {{p“ (kx)} 10" (kx)}}
-Shift&Scale basis functions: Wavelets



The sampling theorem

The sampling theorem formulated in terms of the accuracy of reconstruction of continuous
signals from their samples:

e The least square error approximation a@ (x) of signal a(x) from its samples {a k } taken
on a uniform sampling grid with sampling interval Ax is

= iak sinc[27(x _kAx)/Ax],

k=—c0

provided that signal samples {ak } are obtained as:
— I (x)sinc[27z(x — kAx)/ Ax ldx

¢ The approximation mean square error is minimal in this case and is equal to:
-1/ Ax

ﬂa ) dx = ﬂa “df + ]:\a(f){zdf=2]:\a(f){2df
1/ Ax 1/ Ax

where a(f)= ja(x Jexp(i27fx)dx s signal Fourier spectrum and f is frequency, and

-—00

sinc(x) =sinx/x is “Sinc-function” , the point-spread function of the ideal low-pass filter
1/ Ax

sinc(27zx/ Ax ) = Ax Iexp(— i27fx )df

-1/ Ax




Discrete representation
of integral transforms



Discrete representation of convolution integral

The convolution integral of a signal a(x) with
shift invariant kernel h(x):

b(x)=_°fa(f)h(x-f)d§

Digital filter for samples {a k} and {bk}of input
and output signals

Ny—-1
= Zhnak—n
n=0

N, is the number of non-zero samples of h,

Discrete impulse response {hn} of the digital
filter for input and output signal sampling bases
¢0(S)(x) and ¢‘§r)(x) and sampling interval Ax

= [ [l - £-naxlp (€ (x axas.

—00—00

Overall point spread function of an
analog filter equivalent to a given digital
filter

N,-1N, -1

)= Y 1,0 (x — nax)pt)[€ - (k — n)Ax]

k=0 m=0
N, is the number of samples of the filter output signal {bk} involved in

reconstruction of analog output signal b(x), N, is the number of samples of
the digital filter PSF and Ax is the signal sampling interval

Overall frequency response H ,, (£p)

jjh x,&)expli2z(fx — p&)dxdE= SV(f,p)CFrR(p) q)(r)(f) q)(S)(p)-

Ny-1 N,-1

SV(f.p)= 2 expli2a(f - pkax]: CFrR(p)= 3., expli2zpnAx)
I o exp zZ/;fx)dx o) I [ exp 1271px)dx ;




Discrete representation of 1D Fourier integral transform

1-D direct and inverse integral Fourier Transforms of a signal a(x)

a(f)= [alx)expli2aic)ix a(x)= [ ol Jexpl-i2at)ar
Direct and Inverse Canonical Discrete Fourier Transforms (DFT)
N-1 N-1
=%Zak exp(iZ/t%) \/_Za exp( tZﬂI;V)
k=0

Direct and Inverse Shifted DFTs (SDFT(u,v)):

Sampling conditions:
- Signal and signal sampling device coordinate systems as well as, correspondingly, those of signal spectrum and of the assumed
signal spectrum discretization device, are shifted with respect to each other in such a way that signal sample {q,} and,

correspondingly, sample {a,} of its Fourier spectrum are taken in signal and spectrum coordinates at points x =-udx and f =-vAf .
Signal “cardinal” sampling: Arx =1/NAf

+u)r+v)

1 N (k N-1
a” =—) a, exp|i2x——"F— a”’ exp[—zth
NP Sl "

k=0

(% +u]1£r +v)]

Direct and Inverse Discrete Cosine Transform (DCT:

Sampling conditions:
- Special case of SDFT for sampling grid shift parameters: u=1/2;v =0
Analog signal of final length is, before sampling, artificially padded with its mirror copy to form a symmetrical sampled signal of
double length: {a, =a,,__ };

= k+1/2 ) 1 = ( k+1/2 )
=— x COS| T———r a,=——|a,+2) a, cos| T———r
V2N Z‘, ( N N 21: N

Direct and Inverse Scaled Shifted DFTs ( ScSDFT (u,v; &)

Sampling conditions:
- Sampling rate is o times the cardinal rate: Ax =1/oNA4f

- Sampling shift parameters: u,v #0

a’ = jia" exp[izﬂw] a, = gila," exp[— i (k + 2\(; + v)]
= r=0

oN




Discrete representation of 2D Fourier integral transform

2-D direct and inverse integral Fourier Transforms of a signal a(x,y)

alf.p)= [ Jale.y)esplizm(fr + py)hixay alx.y)= | [olr.p)espl-i2a(fs + py ity

—oco—oc0 —oco—oco

2-D separable direct and inverse canonical DFTs:

Sampling conditions:
- Sampling in a rectangular sampling grid with cardinal sampling rates Ax =1/N 4f, , 4y =1/N,4f,

Zero sampling grid shift parameters

1 NNt . kr Is 1 Ny-IN,-1 kr Is
a,, = a, exp| —i2x| —+— = —i = 4
ki N1N2 ; IZ(; s |: [Nl N2 ):| ak,l \/W I; ; ar,s eXP|: IZF(NI + N2
Scaled Shifted DFTs

Sampling conditions:
Sampling in a rectangular sampling grid. Sampling rates Ax =1/a\N 4f, ; 4y =1/0,N, 4f

Non-zero sampling grid shift parameters (u,v) and (p,q)

o guriva = 3V g exp{izﬂ[ (k +u)r+v)  (+p)s +q)]}

k=0 1=0 o,N, o,N,

Rotated and Scaled DFTs

Sampling conditions:

.. . .. . x? cos@ sinf| x| . .
- Sampling in a rectangular sampling grin in a rotated coordinate system |~ | = with @ as a rotation angle

y —sin@ cos@ |y
- Sampling rates Ax =1/oNAf, ; 4y =1/oN4f, ; Non-zero sampling grid shift parameters (u,v) and (p,q)
N-IN-L ik +51 5k -7l k=k+u; F=r+v;
‘al, <Y Y a,, exp|iln rk+slc0s0_s lsine ; - worErTy
k=0 1= oN oN I=1+p;s=s+gq




Discrete representation of Fresnel integral transform

Fresnel integral Transform

a(f)= ]‘oa(x)exp[iZﬂ'(x_Tf)zj

—00

Scaled Shifted Discrete Fresnel Transform
Sampling conditions:

Cardinal sampling rate Ax =1/oNAf with scale G
Non-zero sampling grid shift parameters (u,v) cw=u/u-vu

2
afr(”’w)=— a, exp _m_(k,u—r/,u+w)
VN =0 oN

1 N-1

Convolutional Discrete Fresnel Transform (ConvDFrT)
Sampling conditions: sampling rates: Ax = Af

1 N-1 N-1 k ﬂ2s2 rs
a = a, exp| i2x exp| —ix exp| —i27x—
’ N s—0{|:kz(; ¢ p( Nj:| p( N p N
1 N-1| N-1 k 2.2 1 N-1 2.2 k_
Zak exp| i2x rs exp —izz"u > a, Zexp —wz’u > exp| i2x rs =
N5 & N N ) N& pary N N

-1

—Zakfrlncd( N;u’sr— k)




Point spread function of discrete Fourier analysis

% P pra f 24 )df
4 Spectrum Signal
samples continuous
computed spectrum
\_using ScDFT u .

PSF of A

discrete
spectral

analysis Y,

By (f 57) = Nsincd[N;(i—fNij}bs (f)

sincd (N ; x) =

sin x N 1s the number of signal samples
N sin(x/N) o —sampling scale parameter

Ax — sampling interval




Zones of applicability of Fourier and convolutional algorithms
of reconstruction holograms recorded in near diffraction zone

Object plane, g>1
Fourier algorithm,
reconstruction with
aliasing

Object plane, g<1
Fourier algorithm,
reconstruction without

aliasing

Hologram
N samples;
Camera pitch

Af®

' Object plane, g=1 \: Object plane, N

Object plane, ¢g>1
Convolution | Fourier and g<1
algorithm, ! Convolution Convolution
reconstruction ! algorithms: algorithm,
without aliasing | reconstructions are : reconstruction

with aliasing /

\_ W, 3 identical




Hologram reconstruction: Fourier algorithm vs Convolution algorithm

Hologram courtesy
Dr. J. Campos, UAB,
Barcelona, Spain
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Fourier
reconstruction of
Fourier the central part of Convolution
reconstruction the hologram free of reconstruction
. aliasing
Image is
destroyed
due to
aliasing Z=33m:
_ b
n?=0.2439
Aliasing
artifacts
7Z=83mm;
n? =0.6618
All Z=136mm;
restorations
p =1

are identical




Discretization aliasing artifacts in reconstruction of a hologram on
different distances using Fourier reconstruction algorithm (left), the
Fourier reconstruction algorithm with appropriate hologram
masking to avoid aliasing ( middle) and the Convolution
reconstruction algorithm

Z=25mm; g=0.18482

mm

0 1 E 2 3
||||||||g|||||||

Hologram courtesy Dr. J. Campos,
UAB, Barcelona, Spain
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When working with sampled images in computers,
one frequently needs to return back to their
continuous originals. Typical applications that
require restoration of continuous image models
are image reconstruction from projections, multi-
modality data fusion, target location and tracking
with sub-pixel accuracy, image restoration from
sparse samples and image differentiation and
integration, to name a few.




Discrete sinc-interpolation:
a gold standard
for image resampling



Image resampling assumes reconstruction of the continuous
approximation of the original non-sampled image by means of
interpolation of available image samples to obtain samples in-
between the given ones. In some applications, for instance, in
computer graphics and print art, simple interpolation methods, such
as nearest neighbor or linear (bilinear) interpolations, can provide
satisfactory results. However, all these methods add interpolation
error to reconstructed continuous image models, thus introducing
signal distortions additional to those caused by the primary image
sampling.

A discrete signal interpolation method that is capable to
secure continuous image restoration without adding any
additional interpolation errors is the discrete sinc-
interpolation




Discrete sinc-interpolation is a discrete analog of the
continuous sinc-interpolation, which, theoretically,
secures error free reconstruction of band-limited signals
from their samples and least mean square error
reconstruction of arbitrary continuous signals, provided
infinitely large number of signal samples is available.

Discrete sinc-interpolation does the same for discrete
signals.




For the purposes of the design of the prefect resampling
filter, one can regard signal co-ordinate shift as a
general resampling operation.

Signal resampling is a linear signal transformation. As
any linear transformation, it can be fully characterized
by its point spread function (PSF) or, correspondingly,
by its overall frequency response.




The optimal shifting re-sampling filter is the filter
that generates a shifted copy of the input signal
with preservation of the analog signal spectrum in
its base band defined by the signal sampling rate
and by the number of available signal samples.

According to this definition, overall continuous
frequency response i % )( p) of the optimal & -
shifting filter for the coordinate shift & is, by
virtue of the Fourier transform shift theorem,

H ™) (p) = exp(i27p &)




According to the discrete representation of the

convolution integral, discrete frequency response
coefficients {7)(5)} (DFT of its discrete PSF) of the

optimal -shift pre-sampling filter must be taken as
samples, in sampling points{r/NAxf;r —0,1,..,N -1 | of its
continuous frequency response, which, for the ideal
signal sampling and reconstruction devices, coincides,
within the signal base band, with the filter overall

frequency response H “?)(p)=exp(i22p &)




Therefore for odd N

) (& ) = %exp(im ;fo), r=0,L,...,(N —1)/2

ﬂr(inw)(&)zﬂ*(inq:) (&') ,l‘=(N+1)/2,...,N—1

0Pt N —r ,opt

and for even N:

exp(iZn' rax j =0,y N/2—1
(p) (52 = NAx
nr,opt =9 &
Acos(ﬂ—), r=N/2
Ax

n)(&%)= () (&), r=N/2+1,..,N -1

,0pt N —r ,opt

The following three options for A are:
Case 0: A=0, Case 1: A=1: Case 2: A=2, .




Therefore, for odd N, point spread function of the optimal O -resampling
(fractional shift) filter is

h?)(& ) = sincd{N, zn — (N —-1)/2- &/ Ax]}.

For even N, Case_0 and Case_2, optimal resampling point spread functions
are

h)(& ) = sincd{N; N - 1;7z[n — (N -1)/2 - & /Ax ]}

n

and

h?)(& ) = sincd{N; N + L;z[n — (N —1)/2 - &/ Ax[} ,

correspondingly, where a modified sincd-function sincd is defined as

sin(Mx/N )
N sin(x/N)

sincd(N;M;x)=

Case_1 is just a combination of Case_0 and Case_2:

B (& ) = [h,si"”’ (&% )+ Rl )]/2 =sincd(+ ,N;x)=
[sincd N - 1;N;x)+ sincd(N + 1;N;x)]/2 .




Point spread functions and frequency response
of the discrete sinc-interpolators

i i i 1 1 i i
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The above results can be formulated as a
theorem:

For analog signals defined by their N samples,
discrete sinc-interpolation is, for odd N, the only
discrete convolution based signal re-sampling
method that does not distort signal spectrum
samples in its base band specified by the signal
sampling rate ; for even N, discrete sinc-
interpolation distorts only the highest N/2-th
frequency spectral component.




Implementation issues:

The described ox -resampling filter that implements discrete
sinc-interpolation is designed in DFT domain. Therefore it can
be straightforwardly implemented using Fast Fourier
Transform with the computational complexity of O(log N)
operations per output signal sample, which makes it competitive
with other less accurate interpolation methods.

From the application point of view, the only drawback of such
an implementation is that it tends to produce signal oscillations
due to the boundary effects caused by the circular periodicity of
convolution implemented in DFT domain. These oscillation
artifacts can be virtually completely eliminated, if discrete sinc-
interpolation convolution is implemented in DCT domain




Interpolation accuracy comparison:
16x18° - image rotation
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Discrete sinc-interpolation vs spline (MemsS31) interpolation:
Image 1000x18° rotation
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Discrete sinc interpolation vs spline (Mems3531) interpolation:
Rotation error DFT spectra comparison (image 10x36° rotation)

Pseudo-random test image

Bicubic interpolation Mems531 interpolation Discrete sinc interpolation
DFT spectra of rotated image error (dark- small errors; bright — large errors)




Image numerical
differentiation and integration

Signal numerical differentiation and integration are
operations that are defined for continuous signals
and require measuring infinitesimal increments or
decrements of signals and their arguments.
Therefore, numerical computing signal derivatives
and integrals assumes one or another method of
building continuous models of signals specified by
their samples through explicit or implicit
interpolation between available signal samples.




Differentiation and integration are shift invariant linear operations. Hence methods of
computing signal derivatives and integrals from their samples can be conveniently designed,
implemented and compared in the Fourier transform domain.

Signal differentiation and integration can be regarded as signal linear filtering with filter
frequency responses, correspondingly

H, (f)=-i24f ana H,(f)=i/24f

diff in .
Then coefficients {ﬂr(,opt)} and {77,(,0;,2} of discrete frequency responses of numerical

differentiation and integration digital filters defined as samples of corresponding continuous
frequency responses are:

r

0, r=0
—i2m /N, r=0L.,N/2-1 iN | 272, r=1l.,N/2-1
) =2 —zl2, r=N/2  Map=y -7/ r=N/2
b B
i22(N=r)IN, r=N/2+1,N—1 iN/22(N-r), r=N/2+1..,N-I
for even ~ and
ag _|~i2mIN, r=O,1,...,(N—1)/2—1.”(,.,”)= iN /27, r=0,lL..,(N-1)/2-1
’ i2n(N-r)/N, r=(N+1)/2,.,N—-1°" iNI2z2(N-r), r=(N+1)/2,.,N—-1

for odd ~.




Accurate numerical differentiation and integration:
implementation issues

One can show that numerical differentiation and integration according above equations imply
the discrete sinc-interpolation of signals. Being designed in DFT domain, the differentiation
and integration filters can be efficiently implemented in DFT domain using Fast Fourier
Transforms with the computational complexity of the algorithms of O(log N) operations per
signal sample.

Likewise all DFT based discrete sinc interpolation algorithms, DFT-based differentiation and
integration algorithms, being the most accurate in term of representation of the corresponding
continuous filters within the signal base band, suffer from boundary effects. Obviously, DFT
based differentiation is especially vulnerable in this respect.

This drawback can be efficiently overcome by means of even extension of signals to double
length through mirror reflection at their boundaries before applying above described DFT
based algorithms. For such extended signals, DFT based differentiation and integration are
reduced to using fast DCT and IDcST algorithms instead of FFT:

k+1/2
I‘aDCT)Slnﬂ' r |.
Sy (#4402,

r=l1

{a, }= 0esT(in) Jo DCT(fa, 1) =

,opt

(DCT)
{a. }= IDcST( 7'") e DCT({a, }) ) Z sin(ﬂ' k +]\1/2 r]

r,opt
r-l

with the same computational complexity of O(log N) operations per signal sample




Conventional numerical differentiation and
integration methods

In numerical mathematics, alternative methods of numerical computing signal
derivatives and integrals are commonly used that are implemented through
signal discrete convolution in the signal domain:

Nj-1 N1

- diff — int
a, = Zhn ai_, . a, = zhn a_, .

n=0 ’ n=0

Commonly, the simplest differentiating kernels of two and five samples are
recommended

D1: kW =[-0.5, 0, 0.5]; D2: K7? =[-1/12, 8/12,0,-8/12,1/12],

Most known numerical integration methods are the Newton-Cotes quadrature
rules. The three first rules are the trapezoidal, the Simpson and the 3/8 Simpson
ones defined, for k£ as a running sample index, as, respectively:

_ _ _ 1 _ 1
a” =0, a" = k(fl)+5(ak_l+ak); a® =0, a® = (2)+§(ak_2+4ak_l+ak).

)
=

B B _ 3
(3/85) = 0, ak(S/SS) =ak(igss) +§(ak—3 + 3ak_2 + 3ak—l +ak ).
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Numerical integration error comparison
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DCT based versus conventional
differentiation-integration methods: signal restoration error

DCT-based differentiation and integration D2 differentiation & tratezoidal integration
75 iterations 75 iterations
T T T T
____________________________ i _ N
___________________________________________________________________________________________________________ ] e e Y
Initial signal oy 1 Initial signal
¢ lterated diff-integr signal _ } | WL CICT LS T
} . | . . a ; i i i i N e ;
100 120 140 160 180200020 100 120 140 160 180 200 220
Sample index Sample index
x 10" ErrorStDev=4.67¢-005 ErrorStDev=0.0386
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lterations

Comparison of standard deviations signal restoration error after iterative successive 75 differentiations
and integrations applied to a test signal for DCT-based differentiation and integration methods and for D2
differentiator and trapezoidal rule integrator, respectively: a), ¢) — initial (blue corves) and restored (red
dots) signals; b), d) — restoration error standard deviation vs the number of iterations



COMPUTATIONAL
IMAGING IN EXAMPLES



Case study: Real time stabilization and
super-resolution of turbulent videos




The video stabilization algorithm

Input video sequence

" v
Stable scene estimation | —»| Motion field estimation by
by means of temporal means of ‘““elastic”
»  averaging of video [ registration of frames
frames v

Frame wise scene
segmentation to stable and
moving objects by means
analysis of the motion

field Output
4 o video
Formation of stabilized video by point-wise means |sequence
» of switching between input signal and stable scene [—>
signal according to the segmentation segmentation







The super-resolution algorithm

Input video sequence

v v
Input frame sub- N Reference frame N Segmented motion
sampling formation field (frame-wise
l l displacement maps)
o

Segmented displacement map controlled replacing reference
frame samples of stable scene by samples of input (non-
stabilized) frames from a selected time window, moving object
samples being taken from the sub-sampled input frames

I

Image recovery from the map of sparse samples

!

Output stabilized and resolution
enhanced video sequence




Super-resolution in turbulent videos
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Low resolution frames upper right); image fused by elastic image registration from 50 frames (bottom
right); a result of iterative interpolation of the middle image after 50 iterations (bottom left).




Turbulent video stabilization and super- resolution
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Image recovery from sparse data
and
the discrete sampling theorem




Shannon-Kotelnikov’s sampling theorem tells how to optimally sample
continuous signals and reconstruct them from the result of sampling with
minimal MSError. This optimal sampling assumes a uniform sampling grid.

In many applications sampled data are collected in an irregular fashion or are
partly lost or unavailable. In these cases it is required to convert irregularly
sampled signals to regularly sampled ones, or to restore missing data.




We address this problem in a framework
of the discrete sampling theorem for
“band-limited” discrete signals that have a
limited number of non-zero transform
coefficients in the domain of a certain
orthogonal transform.




Basic assumptions:

*Continuous signals are represented in computers by their
samples.

*Let the number of signal samples on a regular sampling
grid that are believed to fully represent the original
continuous signal is N

eLet available be K<N samples of this signal, taken at
arbitrary positions of the signal regular sampling grid.

*The goal of the processing is generating, out of this
“incomplete’ set of samples, the complete set of NV signal
samples with the best possible accuracy.

*For definiteness, we will use restoration mean square
error for evaluating signal approximation accuracy.




Discrete Sampling Theorem: preliminaries

Let A be a vector of N samples {a, }k=0,...,N—19 which completely define a

discrete signal, &,  bean NXxN orthogonal transform matrix

N

D, = {(0, (k )}r=0,1,...,N—1 and I, be a vector of signal transform coefficients

eeey.

N-1
Ay=PyIy ={Z7r¢r(k)}
r=0

k=0,1,..N-1

Assume now that available are only K<N samples {a,; }EEK ,where K isa
K-size non-empty subset of indices 10,-1,..,N =1} . These available K signal

samples define a system of equations:

{ak = Igwr (k )}k

~

ek

for signal transform coefficients {7.} of certain K indices r.




Select now a subset R of K transform coefficients indices {i’ € R} and
define a “KofN’-band-limited approximation to the signal as the

AgL = {dk = Z?’F(”r (k)}

FeR
Rewrite this equation in a more general form: ABL {a — Z A ¢ }

rel

and assume that all transform coefficients with indices r¢ R are set to zero:

__|7,reR
' 0, re R

Then the vector A _of available signal samples {a }~ _can be expressed in
terms of the basis functions {g, (k)pf transform &, as:

AK =KOqu5'F _{a~ 271*(01'( )}
and the vector [ ={y.} of signal non- zZero fransform coefficients can be

found as ~ - 1~
Ty =1{7.}=KofNg- A

In L2 norm, by virtue of the Parceval’s theorem, the band-limited signal AgL
approximates the complete signal Ay Wlth mean squared error

MSE =|A, - A H_ \ak AN AN

reR



The Discrete Sampling Theorem

Statement 1. For any discrete signal of N samples defined by its K<N sparse
and not necessarily regularly arranged samples, its band-limited, in terms of a
certain transform @, , its approximation can be obtained with mean square
error

2

Ve

N-1
MSE =|Ay —Ay|=>la, -4, =
k=0 re R
provided that positions of the samples secure the existence of the matrix KofN
inverse to the sub-transform matrix KofN, that corresponds to the band-
limitation. The approximation error can be minimized by using a transform
with the best energy compaction property.

Statement 2. Any signal of N samples that is known to have only K<N non-
zero transform coefficients for certain transform ®,(®, - “band-limited”
signal) can be fully recovered from exactly K of its samples provided the
positions of the sample secure the existence of the matrix KofNg  inverse to
the transform sub-matrix KofNg, that corresponds to the band-limitation.




Analysis of transforms: DFT

Low-pass DFT band- limited signals:
7.eR,,={0,L1,..,(K-1)/2,N - (K - 1)/2,_::,N ~-11}

KofN:r. DFT -trimmed matrix KofNj,, ={exp izﬂkz’;’uﬂ is a

Vandermonde matrix, and, as such, it can be inverted

Theorem 1.

Low-pass DFT band-limited signals of N samples with only K nonzero low frequency
DFT coefficients can be precisely recovered from exactly K of their samples taken in
arbitrary positions

High-pass DFT band-limited signals:

Fup € Ryp ={[(N — K +1)/2,(N - K +3)/2,.,(N + K -1)/21}
KofNX DFT -high-pass trimmed matrix KofN'" = {exp(i 2ﬁki’m, J}
is a Vendermonde matrix, and, as such, it can be inverted N

Theorem 2.

High-pass DFT band-limited signals of N samples with only K nonzero high
frequency DFT coefficients can be precisely recovered from exactly K of their
arbitrarily taken samples.



Analysis of transforms: DCT

DCT is an orthogonal transform with very good energy compaction
properties. It is well suited for compressed representation of many types of
signals

N-point Discrete Cosine Transform of a signal is equivalent to 2N-point
Shifted Discrete Fourier Transform (SDFT) with shift parameters (1/2,0) of
the 2N- sample signal obtained from the initial one by its mirror reflection
from its borders

KofN-trimmed matrix of SDFT(1/2,0)

~ A (k+1/2)F | _ ., kF L F Ve Ll
KofN ¢prr —{exp(ﬂfr SN )}—{exp(szrZN){exp(wrZN)é'(k r)}}_

~

_ T \St—
=KofN ;s {exp(zfrZN )§(k r)}

Therefore, for DCT theorems similar to those for DFT hold




Analysis of transforms: Discrete Fresnel
transform

Canonical Discrete Fresnel Transform (DFrT) 1s defined as

1 . (ku-riu)f
ak=W§)a,.exp[—m( H N ,u)}

where L 1s a distance parameter.

DFrT can easily be expressed via DFT:

o=~ 0, ex i H ) ex (—isz—rj exp| i
r =N ~ k €XP N p N P ,uZN

In a matrix form, it can be represented as a matrix product of
diagonal matrices and the matrix of Discrete Fourier
Transform. Therefore for Discrete Fresnel Transform
formulation of band-limitation and requirements to positions
of sparse samples are the similar to those for DFT.




2-D transforms:
*Separable band-
limitation
eInseparable band-
limitation

Other
transforms:

*Walsh transform
eHaar transform
*Wavelet transforms

DCT domain spectral mask; B

L

Real life 1

-y L
n ol Sk,
e —a . )

'W=0.047852 DCT domain spectral mask; BW=0.047

mage and its DCT spectrum




Algorithms:

1. Direct matrix inversion A5 = {&k = Z[KofN:;- A K]qyf (k)}

FeR
An open question: do fast algorithms for matrix
inversion exist?

For DFT, DCT, Walsh, Haar and other transforms
that feature FFT-type algorithms, pruned fast
algorithms might be used.

2. Iterative Gershberg-Papoulis-type algorithm




Iterative Gershberg-Papoulis type signal
recovery algorithm

Initial guess: available signal samples on a dense sampling grid
defined by the accuracy of measuring sample coordinates,
supplemented with a guess of the rest of the samples, for which
zeros, signal mean value or random numbers can be used

Signal
transform

A

Zeroing
transform
coefficients
according to
the band-
limitation
assumption

Inverse
transform

A

Generating
iterated
signal
estimate by
restoring
available
signal
samples

Iteration loop

Output estimate after
a selected number of

iterations

v




Experiments with DFT

Original signal (red), available samples (blue}, Original signal (red), availahle samples (blue),
samples reconstructed by matrix inversion {black) samples reconstructed by the iterative algorithm {black)

VAN NI

30 40 80 60
lterations
Std Dev of approximation error

Original signal (red), available samples (blue},
samples reconstructed by matrix inversion {black)

AR

V 10 ... ......... ........ ........ Do ...... ........ ......... ........ peee 4
o5k ............. ............. 1.8 ............ 3 I . - : : : : : : . : '

Ak T A S S LY ] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10 20 30 40 50 60
Restoration of a DFT low pass band-limited signal by matrix inversion for the cases
of random (a), upper ) and compactly placed signal samples (a), bottom) and by the
iterative algorithm (b). Bottom right plot shows standard deviation of signal
restoration error as a function of the number of iterations. The experiment was
conducted for a test signal length 64 samples; bandwidth 13 frequency samples (~1/5

of the signal base band)




Image recovery from sparse samples:
DCT with separable band limitation

BL square; BW=0.0478; BL square; BW=0.0478; Redund. 1; BL square; BW=0.0478; Redund. 1
Image map; 5§ =0.0479. Redund=1 DSinc reconstr.; ErrStDev=0.000237 Reconstr. error, [tr=100000; PSHR =4_23e+003

L

a8
T

DCT domain spectral mask; BW=0.047852

1'&.

i

BL square; BW=0.0478; Redund 1; Bl square;BW=0.0478; Redund 1;
Bspline-reconstr: SplineErrStDev=0.00103 DsincRecPSNR =4.23e+003; SplineRecPSNR=966
N R b T T T T

S [ i l 10 N?IIIIOI'IL;]E[ of i(erazié:s 16 .10
Recovery of an image band limited in DCT domain by a square: a) — initial image with 3136 “randomly” place
samples (shown by white dots); b) — the shape of the image spectrum in DCT domain; ¢) —image restored by the
iterative algorithm after 100000 iterations with restoration PSNR (peak signal-to-error standard deviation) 4230;
d) image restored by B-spline interpolation with restoration PSNR 966; e) iterative algorithm restoration error
(white — large errors; black — small errors); f) —restoration error standard deviation versus the number of
iterations for the iterative algorith and that for the B-spline interpolation [OUTIMG ._r,StdErr,OUTIMG. spline, StdErr_spline,
msk]=map_reconstr_test_sinc_spline(64,0.05);



Image recovery from sparse samples:
DCT with non-separable band limitation

Imag map; BL circle r; BW=0.0474; rcle [:l r; BW=0.0474; Redund 1.28 BL circle sector; BW=0.0474; Redund 1.28;
Sparseness = I]I]EI]S R d nd=1.2784 DSin nstr. ErrStDev=0.0465 Recnnsl rrrrrrrr Itr=100000; PSNR =21.5

BL circle sector; BW=0.0474; Redund 1.28; BL: circle sector; BW=0.0474; Redund 1.278
Bspline-reconstr: SplineErrStDev=0.135 i =21.5; Spli 42

-5 ;-

error StdDev

econstr

10° 10" 10° 10’ 10* 10°
HNumber of iterations

Recovery of an image band limited in DCT domain by a circle sector: a) — initial image with 3964 “randomly” place
samples (shown by white dots); b) — the shape of the image spectrum in DCT domain; ¢) —-image restored by the iterative
algorithm after 100000 iterations with restoration PSNR (peak signal-to-error standard deviation) 21.5; d) image restored
by B-spline interpolation with restoration PSNR 7.42; e) iterative algorithm restoration error (white — large errors; black —
small errors); f) —the restoration error standard deviation versus the number of iterations of the iterative algorithm for the
iterative algorithm and that for the B-spline interpolation



Image recovery from level lines:
DCT with non-separable band limitation

BW=0.0046; Sparseness=0.1;
=22 DSinc reconstr.: DsincErrStDev=2.89¢ 005

=0.0046; Sparseness

BW=0.0046; Redund=22;
Dscincl&'lecPSNR =|34Ei31; SpllineRecPSII‘lR=29.4

N Foocoamonoec: ....... B- 'splineintarpnlati‘or

BW I] 0046; Sparseness 0.1;
Bspline-reconstr: Splin E rS5tDev=0.034 BW=0.0046; Sparseness=0.1; DsincReconstr. arror

-3 L Iteratl'-.-'e algorlth

Reconstr error StdDevy

200 4DD EDD EDD 1000
Number of iterations

Recovery of an image band limited in DCT domain by a circle sector from its level lines: a) — initial image with level lines
(shown by white dots); b) —image restored by the iterative algorithm after 1000 iterations with restoration PSNR 3.5x10* (note
that the restoration error is concentrated in a small area of the image); c) image restored by B-spline interpolation with
restoration PSNR 29.4; d) iterative algorithm restoration error (white — large errors; black — small errors); e) —the restoration
error standard deviation versus the number of iterations of the iterative algorithm for the iterative algorithm and that for the
B-spline interpolation



Signal recovery from sparse or non uniformly
sampled data as an approximation task

Signal recovery from sparse or non-uniformly sampled data can be
treated as as finding best signal band-limited approximation. For this, the
above theory and algorithms can be applied as following:

1. Given a certain number of available signal samples, specify the signal
dense sampling grid and the required number of samples to be
recovered.

2. Select a transform with presumably better energy compaction
capability for the signal at hand and specify the signal band limitation in
the domain of this transform.

3. Place available signal samples on the signal dense sampling grid and
run the direct matrix inversion or the iterative reconstruction algorithm.




Energy compaction capability of transforms

Testimage 1

Testimage 1: Fraction of signal energy
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Errors due to image band limitation

DCT_LP image; BW=023 ;StdEr=16.3692

4

DCT_LP image; BW=0.3 ;StdErr=2.9807

Walsh_LP image; BW=0.3 ;StdErr=4.1801




Applications examples:

-image super-resolution from
turbulent videos (shown above)

-Image super-resolution in
computed tomography




Super resolution in computed tomography




Image recovery from sparse samples:
the “Compressing sensing” approach



Images sampling and redundancy

Fourier spectra of images are usually quite rapidly decaying with
frequency /. However high frequency spectral components carry highly
important information for image analysis, object detection and recognition
that can’t be neglected in spite of the fact that their contribution to signal

dx— _Ha dx

energy .[ \a is relatively small. For this reason, sampling

interval Ax must be taken sufficiently small in order to preserve image
essential high frequencies. As a consequence, image representation by
samples is frequently very redundant because samples are highly
correlated.

This means, that, in principle, much less samples would be sufficient for
image reconstruction if the reconstruction is done in a more sophisticated
way than by means of conventional weighted summation according to the
sampling theorem




Described methods for image recovery from sparse
samples by means of their band-limited approximation in
certain transform domain require explicit formulation of
the desired band limitation in the selected transform
domain.

This a priori knowledge that one has to invest is quite
natural to assume. If one selects a transform according to
its energy compaction capability, one may know how this
capability works, i.e. what transform coefficients are
expected to be zero or non-zero.

If, however, this is not known or not certain a priori,
image recovery can be achieved using an approach,
which obtained the name, in fact, quite confusing,
“compressive sensing” (Donoho, D., “Compressed sensing”’(2006), IEEE
Trans. On Information Theory, v. 52(4), pp. 1289-1306 ).




The compressive sensing approach to
signal reconstruction from sparse data

The “compressive sensing”’ approach also assumes obtaining band-limited,
in certain selected transform domain, approximation of images but does not
require explicit formulation of the band-limitation.

According to this approach, from available M<N signal samples {an~z } ,a
signal {a f } of N samples is recovered that provides minimum to L, norm

N-1
lal, = || of signal transform coefficients {2.} for the selected transform.
r=0

The basis of this approach is the observation, that minimization of signal L1
norm ‘‘almost glways” in transform domain leads to minimization of L0 —
norm |4 L= 2l ' , that is to the minimization of the number of non-zero
signal transform coefficients

The price for the uncertainty regarding band limitation is that the number
of required signal samples M must be in this case redundant with respect to
the given number K non-zero spectral coefficients: M/K =0O(logN)




Sinc-lets and other discrete signals

sharply limited both in signal and
DFT/DCT domains




The uncertainty principle:

Continuous signals cannot be both finite and sharply
band-limited:

X XF_z>1

where X ¢ is interval 1n signal domain that contains &S - fraction of
its entire energy, F , is interval in Fourier spectral domain that
contains €B - fraction of signal energy and both &S and &B

are sufficiently small.




How the uncertainty principle can be
translated to discrete signals?

eDiscrete signals that represent continuous signals through
their samples are always finite as they contain finite
number of samples.

eDiscrete signals can be sharply ‘“band-limited” in any
transform, including DFT and DCT.

For some transforms, such as, for instance, Haar
transform and Radon Transform, discrete signals that are
sharply limited both in signal and transform domain
obviously exist

Do exist discrete signals that are sharply limited both in
signal and DFT or/and DCT, domains?




Space-limited & Band-limited discrete signals do exist

They are fixed points of the iterative algorithm:

‘ Inverse transform (DFT, DCT)

Direct transform (DFT, DCT) ’

ABL = K*"ofN_SLIT,

Space limitation Spectrum band
operator limitation operator

Images

Image
DFT
spectra




The discrete uncertainty principle

The (continuous) uncertainty X X F >1
principle

‘ Signal sampling 1ntervak @ ggnal sampling interval ’

Af >1

szgn spectr

The number of signal |

@y non-zero samples

1
Cardinal li lati hi NsignN spectr >
ardinal sampiing reiationsnip Ax Af

1
acrf = u

The discrete uncertainty relationship

>N

‘ The number of signal
non-zero samples

The number of signal N sign N spectr
samples




Sinc-lets:

sharply band limited basis functions with
sharply limited support

SL2

t=0

Inverse transform (DFT, DCT)

SI®

Space limitation
operator

= K ofN_SLIT;" {K*-
t

Slk-k,)

Direct transform (DFT, DCT)
ofN_BLﬁﬁalm)

Spectrum band
limitation operator




Signal; Nit=100; N=512; Slim=103 Signal; Nit=100; N=512; Slim=103
T T T T T

o8

1 1
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L L
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Spectrum; Nit=100; BlimDFT=103

200 220 240 260 280
fftshift{Frequency index)
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1 1
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fftshift{Frequency index)

Cross-correlations
of shifted sinc-lets

Cross-correlations
of shifted sinc-lets




2D Sinc-lets

Sinclets and Spectra; ResidStDev=0.00447; N=256; 5zLim=128 ;Blim=51

()




Imaging without optics :
“Optics-Less Smart
sensors’




telescope 9 m
mirror

Conventional optical imaging
systems use photo-sensitive plane
arrays of sub-sensors coupled
with focused optics that form a
map of the environment onto this
image plane. The optics carry out
all the information processing
needed to form this mapping in
parallel and at the speed of light,
but comes with some
disadvantages.

*Because of the law of diffraction,
accurate mapping requires large
lens sizes and complex optical
systems.

eLenses limit the field of view and
are only available within a limited
range of the electromagnetic
spectrum.



Conventional optical imaging systems use photo-
sensitive planar arrays of detectors coupled with
focusing optics that form a map of the environment
on the image plane. The optics carry this out at the
speed of light, but lenses come with some
disadvantages

"Z;Z’—\—\ ““““““ N *Accurate mapping requires large lens sizes and
. \ complex optical systems.

____________________ eLenses limit the field of view and

ANUAN *Lenses are only available within a limited range of
» the electromagnetic spectrum.

Array of detectors

The ever-decreasing cost of computing makes it possible to make
imaging devices smaller by replacing optical and mechanical
components with computation.




Conventional optical imaging systems use photo-
sensitive planar arrays of detectors coupled with
focused optics that form a map of the environment
on the image plane.

Optics carry this out at the speed of light, but come
with some disadvantages.

- accurate mapping requires large and heavy lenses

- lenses limit the field of view

- lenses are not available for many types of radiation.

The ever decreasing cost of computing and ever increasing computer
power makes it possible to replace in imaging devices optical and
mechanical components with computation.

This motivates a search for optics-less computational imaging devices.




We treat images as data that indicate locations
in space and intensities of sources of radiation
and show that imaging tasks can be performed
by means of optics less imaging devices
consisting of set of bare radiation detectors
arranged on flat or curved surface and
supplemented with signal processing unit that
use detector outputs to compute optimal
statistical estimations of sources’ intensities
and coordinates.

We call this class of sensors

“Optics-Less Smart” (OLS) sensors




Optics-less radiation sensors:
arrays of radiation detectors with natural cosine-low or alike angular sensitivity
arranged on flat or curved surfaces and supplemented with a signal processing unit

A layer of radiation detectors

I - . - -
Signal processing unit

lEstimates of intensities and

directional angles of the
radiation sources

Radiation source

Radiation detectors on

Examples of the physical design and models used in experiments




An outline of the basic idea:
Locating a single distant radiation source (planar model)

. (A, 0)
<Z;Z>

p MAP

Direction to the : , g estimates:

distant light ! o )’
’ s 2, 2
e “’2 , / i \/ S +8; +2s5,;5,c082¢
/// i // /// Sin 2(P
A 5 —8
tand =—1—=tang
S, 5,

First Second
detector detector with
with cosine- cosine-law
law angular angular
sensitivity sensitivity




Sensor’s operation principle:

generating, using signals from all elemental detectors, optimal
statistical estimates of the radiation source intensity and coordinates
or directional angles

A Maximum Likelihood model

of sensing distant radiation
A—

:, Detector’s angular sensitivity pattern
' in polar coordinates

sources

s[n]= fl[k]AngSens(\HSRC [k 1+ Oy [1])+ vIn]

N

{i[k],éSRC [k]}: arg min Z(s[n]— il[k]AngSens(\HSRC [k1+ 6,0 [n]\))

{I1k1,05rc (K1} | n=1




Performance evaluation: theoretical lower
bounds. Spherical sensor, single distant source

*OLS sensors are essentially nonlinear devices that can't be described in terms of
point-spread functions. Their performance can be characterized by the probability
distribution function of source parameter estimation errors

Statistical theory of parameter estimation shows that, for parameter estimation
from data subjected to sufficiently small independent Gaussian additive noise,
estimation errors have a normal distribution with mean of zero and standard
deviation given by the Cramer-Rao lower bound (CRLB)

Assuming the simplest Lambertian cosine law angular sensitivity function of the

detectors cos &, \19{ <72

AngSens(?%) = { 0,‘ 29( > 7/2

CRLBs are found, for a single source and for the spherical model, to be
A 20 A 20
«/Var{ﬁ }2—' vary (=2 ——
e IS N T N

where o is standard deviation of detector’s noise; N is the number of detectors, I is
the source intensity




Performance evaluation: theoretical lower
bounds. Spherical sensor, two and more sources:

For the case of two sources, CRLBs are found to be

20
I[k]\/AeSRC /AHSENS

where AOggq is the angular difference between sources and AOg.\=n/N is the
angle between neighboring detectors.

\/ Var{ésﬁ,c [k]}= ; given A6Og. > Al k=12

Resolving power of the sensor:

If the angular separation between sources is smaller than the angular
separation between neighboring detectors (AOgpng> AOgrs), the estimator’s
performance rapidly worsens and becomes no better than that of random
guessing.

Numerical results for cases with more than two sources show that regardless
of the number of equally-spaced sources, the average estimation error for all
the sources is equal to the error predicted for the 2-source problem




Optics Less sensor basic operation modes

''General localization'' mode: localization and intensity
estimation of a given number of radiation sources.

*‘Constellation localization’ mode: estimation of
intensities and locations of ‘“constellations’ of radiation
sources, which consist of a known number of point
sources of known configuration and relative distribution
of intensities

''Imaging'' mode: estimation of intensities of a given
number of radiation sources in the given locations, for
instance, on a regular grid.




Computer model:

Spherical and planar models of optics less radiations sensors
were tested in the localization and imaging modes by
numerical simulation using, for generating Maximum
Likelihood estimates of sources’ intensities and locations, the
multi-start global optimization method with pseudo-random
initial guesses and Matlab’s quasi-Newton method for finding
local optima.

In order to improve reliability of global maximum location
and accelerate the search, input data were subjected to
decorrelation preprocessing by means of the ‘‘whitening”
algorithm that proved to be optimal preprocessing algorithm
for point target location in clutter. It is interesting to note
that a similar data decorrelation is known in vision science as
“lateral inhibition”




Experiment:
Spherical sensor in the imaging mode

Pattern of detectors’
Pattern of 19x16 sources outputs
(spherical array of 16x20 = 320 detectors
arranged within spatial angles +n/2 longitude
and +711/2.05 latitude; detector’s noise
standard deviation 0.01

Reconstructed image
Standard deviation of estimation
errors 0.064




Planar sensor in the localization mode

Spread of “‘hits” (color dots) of estimation of a single radiation
source locations in different positions (marked by blue circles) with
respect to the sensors, consisting of 11 detectors (yellow boxes)




Planar sensor in the localization mode: estimation errors
position and intensity of a single radiation source placed

different positions in front of the sensor

XerrStDey YerrStDev

=2 Y=25

=1
Y=1
Line array of 25 detectors Line array of 25 detectors

lerrStDev

- X&Y&lerrStDev along the optical axis
100 ———— e KKl Eor o —

10’1 T i

102 -

+XerrStd=Dev 1
i R Y —e— verrStDev
—%— lerrSthev

107

Line array of 25 detectors s 10 15 20 28

Distance from the sensor

Maps of standard deviations of estimation errors of X-Y coordinates (a, b) and of intensity (c) of a radiation
source as a function of the source position with respect to the surface of the line array of 25 detectors. Darker
areas correspond to larger errors. Plot d) shows standard deviations of X. Y and intensity estimation errors as

function of the distance from the sensor along the sensor ‘optical axis” (central sections of Figs. a)-c))




Planar sensor in the imaging mode

Distance Detector readings Estimated source intensities

ST

Error standard deviation 5.6850e-04
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Sensing of 8x16 radiation sources arranged on a plane in form of characters “SV’’ by a 3-D model of a flat
OLS sensor of 8x16 elementary detectors in the ‘“imaging” mode for distances of sources from the sensor Z=1
to 8 (in units of inter-detector distance). SNR was kept constant at 100 by making the source amplitude
proportional to the distance between the source plane and sensor plane. Detector noise StDev=0.01.




Sensors on convex surfaces in the localization mode

I errorStDev map; 11 Subsensors; Radius 100
50 runs; NoiseStDev: 0.07

phi Error STD Map11 Subsensors; Radivs T00
50 runs; NoiseStDev: 0.07

Rho error Stev mapT1 Subsensors; Radins 100
50 runs; NoiseStDev: 0,07
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Sensors on bent convex surfaces (1D model, 11 detectors, noise standard deviation 0.01): map of standard
deviations of estimation errors of source intensity (left column), that of source direction angle (central column)

and that of the distance to the source (right column) as functions of the source position with respect to the
sensor’s surface. Darker areas correspond to larger errors.




Sensors on concave surfaces in the localization mode

y coordinate

l-error STD Map; 11 Sensors; Radius of Bending: 1C
Number of Noise Realizations: 50; NoiseSTD: 0.01
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l-etror STD Map; 11 Sensors; Radius of Bending: 5
Number of Noise Realizations: 50; NoiseSTD: 0.01
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Phi-error STD Map; 11 Sensors; Radius of Bending: 10
Number of Noise Realizations: 50; NoiseSTD: 0.01
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Phi-error STD Map; 11 Sensors; Radius of Bending: 5
Number of Moise Realizations: 50; NoiseSTD: 0.01
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Rho-error STD Map; 11 Sensors; Radius of Bending: 10
Number of Noise Realizations: 50; NoiseSTD: 0.01
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Number of Noise Realizations: 50; MoiseSTD: 0.01
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Optics-less “smart” sensors:

Calculations per Second per $1,000

Moore’s Law
The Fifth Paradigm

Logarithmic Plot
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Electromechanical Relay  Vacuum Tube Transistor
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Year

Integrated Circuit

Sensors.

advantages and limitations

Advantages
* No optics are needed, making this type

of sensor applicable to virtually any type of
radiation and to any wavelength

* The angle of view (of spherical sensors)
is unlimited

e The resolving power is determined
ultimately by the sub-sensor size, and not
by diffraction-related limits

* Sensors without optics can be made
more compact and robust than traditional
optical sensors

Limitations:

High computational complexity, especially
when good imaging properties for multiple
sources are required.

However, the inexorable march of Moore’s law makes such
problems more feasible each year. Furthermore, the computations
lend themselves to high-concurrency computation, so the
computational aspects are not expected to hinder usage of OLS
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COMPUTATIONAL
IMAGING AND
EVOLUTION OF
VISION IN THE
NATURE



Optics-less extra ocular cutaneous (skin) vision in Nature
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The flat worm has ''cup
eyespots that can slightly
distinguish light
direction.

Pit organs in python.
Arrows pointing to the pit
organs are red; a black
arrow points to the nostril

Electroreceptors and lateral line canals in sharks in some
types of fish.

- Heliotropism of some plants

- Eye spots (patches of photosensitive cells on
the skin), cup eyes, and pit eyes

- Cutaneous photoreception in reptiles

- Infra-red radiation sensitive ‘“‘pit organs” of
vipers

- The pressure sensitive ‘“‘lateral line system” of
fish, which they use to localize sources of
vibration located within approximately one
body length

- Electric field sensitive receptors in sharks and
in some types of fish, which allow animals to
sense electrical field variations in their
surroundings within approximately one body
length

There are also a number of reports on the
phenomenon of primitive cutaneous vision in
humans




Presented simulation results

Show that reasonably good directional vision without optics is
possible even using the simplest possible detectors whose
angular sensitivity is defined only by the surface absorptivity.

*Are in a good correlation with published observations in studies
of cutaneous vision

*Allow suggesting that the operational principle and capabilities
of OLS sensors can be used to model operational principles and
capabilities of cutaneous vision and its neural circuitry.

Motivate advancing a hypothesis that evolution of vision started
from formation, around primordial light sensitive cells, of
neural circuitry for implementing imaging algorithms similar to
those in our model of the flat OLS sensor, including, at one of
the first step, the lateral inhibition.




The reported OLS sensor models naturally suggests also, that
flat primordial eyespots may have evolved, through bending of
the sensor’s surface to convex or concave spherical forms, to the
compound facet eye or camera-like vision, correspondingly

In both cases, the evolution of eye optics had to be paralleled by the evolution
of eye neural circuitry as an inseparable part of animal brains. As it follows
from the theory, detection and localization of targets does not necessarily
require formation of sharp images and can be carried out directly on not
sharply focused images. Image sharpness affects the reliability of detection
and becomes important only for low signal-to-noise ratio at detectors.
Therefore, gradual improvements of eye optics in course of evolution of eye
optics may have translated into improved target detection reliability and
allowed transferring, in course of evolution, the higher and higher fraction of
eye neural circuitry and brain resources from image formation to image
understanding.




TWO BRANCHES OF EVOLUTION OF VISION

|| Subcutaneous neural net ||

Transparent
protective medium
with refracting
index >1

Subcutaneous neural ne

Compound Central nervous
apposition or system
superposition eyes of
insects Camera like eye of

vertebrates
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