

2224-5

School on New Trends in Quantum Dynamics and Quantum Entanglement

14 - 18 February 2011

OUT OF EQUILIBRIUM, DRIVEN OPEN QUANTUM SYSTEMS. TOWARDS QUANTUM EFFECTS IN BIOLOGY. Part I. A quantum toolbox for biological systems

Markus TIERSCH

Institute for Quantum Optics and Quantum Information, IQOQI, Austrian Academy of Sciences & Institute for Theoretical Physics, University of Innsbruck
Austria

Out of equilibrium, driven open quantum systems Towards quantum effects in biology

Part I. A quantum toolbox for biological systems

Markus TIERSCH

School on New Trends in Quantum Dynamics and Quantum Entanglement, ICTP, Trieste

Feb. 14, 2011

Plan of the lectures

Part I.

A quantum toolbox for biological systems

 learning simple mechanisms & ingredients in driven, open quantum systems with spin gases

Part II.

Conformational-motion induced quantum effects

• applying the learned concepts to biologically inspired model systems

Part III.

The avian compass

discussing a real world example where quantum dynamics make a difference

Outline of Part I

- •What is a spin gas?
- State structure of spin gases and entanglement dynamics
- Adding decoherence
- Reset mechanism

"Biology"

Here:

synonymous with microbiology/biochemistry

Regarding the lowest structural level on which processes of life appear.

In contrast to

debates about quantum physics and the brain/consciousness.

Quantum effects in biology?

On the fundamental level everything is quantum mechanical, so what?

© Peter Badge and Lindau Nobel Foundation

Robert Huber (Nobel Prize Chemistry 1988 for protein structure determination)

"Processes in biology are fully explained by classical physics (apart from tunneling of electrons or protons)."

Biologist's answer:

Biomolecular function (e.g. protein function) is well explained by classical mechanical models.

Quantum physics only provides substrate (molecules) on which biological processes take place. => applications in molecular dynamics, protein folding

Physicist's answer:

Biological systems are "warm wet, and noisy". => plenty of **decoherence!**

But:

Biological systems are open quantum systems that are driven and therefore operate far away from thermal equilibrium.

Spin gases

Boltzmann gas

- dilute gas of classical particles (mean free path ~ dimensions of container)
- thermal equilibrium (gas completely described by density, volume, temperature)
- molecular chaos
 - →uncorrelated spacial distribution (uniform density)
 - ightharpoonup uncorrelated velocities (Maxwell-Boltzmann distribution) only parameter: $\sigma = \sqrt{k_BT/m}$
- \blacktriangleright distinguishable particles move on classical, deterministic trajectories $\vec{r}_k(t)$
- ▶ temperature *T* determines the collision rate *r*

Spin gas = Boltzmann gas + Spins

each gas particle carries an internal **quantum** degree of freedom, e.g. here a spin-1/2 or qubit

=> semi-quantal Boltzmann gas

[Calsamiglia, PRL (2005)]

collision-type interactions between spins

$$H_{int}(t) = \sum_{k < l} g[\vec{r}_k(t), \vec{r}_l(t)] H_{kl}$$
couplings: stochastic functions of

Driving =

external time dependence in the system Hamiltonian

Here: classical dynamics (gas) drive the quantum dynamics (spins)

State evolution in a spin gas

simplest case: $[H_{kl}, H_{k'l'}] = 0$ of Ising-type

$$|\psi(t)\rangle = U(t)|\psi(0)\rangle = \prod_{k < l} e^{-i\phi_{kl}(t)H_{kl}}|\psi(0)\rangle$$

at time *t* all the interaction phases suffice to describe the state completely (including the entire interaction history)

$$\phi_{kl}(t) = \int_0^t g\left[\vec{r}_k(\tau), \vec{r}_l(\tau)\right] d\tau$$

collision model:

hard spheres of diameter d, acquired phases ~1/(relative speed), e.g. large interaction constant or low T (non-perturbative!) => random phase $\phi \in [0, 2\pi]$

Concrete dynamics

For concreteness (and illustration) we use an Ising-type interaction (controlled phase-gate):

$$H_{kl} = \frac{(\mathbb{I} - \sigma_z^{(k)})}{2} \otimes \frac{(\mathbb{I} - \sigma_z^{(l)})}{2} = |11\rangle_{kl}\langle 11|$$

Initial state (not entangled):

$$|\psi(0)\rangle = |+\rangle^{\otimes N}$$
 $|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$

Collisional history completely contained in:

$$\Gamma(t) = \begin{pmatrix} 0 & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & 0 & & \vdots \\ \vdots & & \ddots & \phi_{N-1,N} \\ \phi_{N1} & \cdots & \phi_{N,N-1} & 0 \end{pmatrix}$$

Internal state of gas at time t:

$$|\psi(t)\rangle = U(t)|+\rangle^{\otimes N}$$

$$= \frac{1}{2^{N/2}} \sum_{\vec{s}} e^{i\vec{s}\cdot\Gamma(t)\cdot\vec{s}/2} |\vec{s}\rangle$$

Quantum states as weighted graphs

$$|\psi(t)
angle = rac{1}{2^{N/2}}\sum_{ec{s}}e^{iec{s}\cdot \Gamma(t)\cdot ec{s}/2}|ec{s}
angle ext{vector of N bits}$$
 exponentially many terms (in N)

of a weighted graph

$$N(N-1)/2$$
 interaction phases
$$\Gamma(t) = \begin{pmatrix} 0 & \phi_{12} & \cdots & \phi_{1N} \\ \phi_{21} & 0 & & \vdots \\ \vdots & & \ddots & \phi_{N-1,N} \\ \phi_{N1} & \cdots & \phi_{N,N-1} & 0 \end{pmatrix}$$
 adjacency matrix of a **weighted** graph

Here, in spin gases: states are random graphs (random edges & weights)

state properties can be conveniently and efficiently(!) discussed by means of its graph

Entanglement properties

entanglement of two collided particles depends on the collisional phase (weight of edges)

separable: $\phi = 0$ maximally entangled: $\phi = \pi$

$$\forall \phi_{kl} \in \{0, \pi\}$$

=> subset: graph states, incl. 2D cluster states (known as resource states for measurement-based quantum computation)

In fact, any two particles that are connected by a path are (localizable) entangled!

Procedure from one-way quantum computation:

- (1) measure all but the connecting particles along z
- (2) measure connecting particles along x

Weighted graph states are an interesting and useful class of quantum states!

Entanglement properties II

Entanglement between subsets A and B is given by the entropy of one subsystem for a pure state of A and B.

$$E_{A|B} = S(
ho_A) = -\operatorname{Tr}(
ho_A \log_2
ho_A)$$
 $ho_A = \operatorname{Tr}_B |\psi(t)
angle \langle \psi(t)|$

$$\rho_{A} = \frac{1}{2^{N}} \operatorname{Tr}_{B} \sum_{s,s'} e^{i(s \cdot \Gamma \cdot s - s' \cdot \Gamma \cdot s')/2} |s\rangle \langle s'|$$

$$\cong \frac{1}{2^{N_{A}}} \sum_{s_{A},s'_{A}} \left(\frac{1}{2^{N_{B}}} \sum_{s_{B}} e^{i(s_{A} - s'_{A}) \cdot \Gamma_{AB} \cdot s_{B}} \right) |s_{A}\rangle \langle s'_{A}|$$

$$= \frac{1}{2^{N_{A}}} \sum_{s_{A},s'_{A}} \left(\frac{1}{2^{N_{B}}} \sum_{s_{B}} e^{i(s_{A} - s'_{A}) \cdot \Gamma_{AB} \cdot s_{B}} \right) |s_{A}\rangle \langle s'_{A}|$$

$$= \operatorname{stronger} \text{ entanglement of A \& B}$$

$$= \operatorname{stronger} \text{ entanglement of A \& B}$$

$$= \operatorname{stronger} \operatorname{entanglement} \operatorname{of} \operatorname{of$$

coherences (off-diagonal elements) of are damped by every interaction with a particle of B

=> stronger entanglement of A & B

$$\rho_{s_A,s_A'}(t) = C_{s_A,s_A'}(t)\rho_{s_A,s_A'}(0)$$

Entanglement dynamics

initial state: separable

early times:
$$rt < 1$$

$$\langle S_A \rangle \approx \frac{N_A N_B}{N-1} rt \langle S \rangle_{\phi}^{pair}$$

 $rt \to \infty$

long-time limit: equilibrium state = fully connected graph with random phases (independent, uniform in $[0, 2\pi]$)

> almost maximally entangled with respect to all possible bipartitions $N_A \ge \langle S_A \rangle \ge N_A - 1$

Example: any two pair of spins is connected by a third one with $\phi_{13} \approx \phi_{23} \approx \pi$

=> Localize maximal entanglement between 1 & 2

Entanglement dynamics: Example

Entropy of state of 6 particles of a 100 particle gas

average over 100 simulation runs

[Hartmann, J. Phys. B. (2007)]

Adding decoherence

Second gas species (background gas) plays the role of an **environment**

=> strongly interacting, non-Markovian (for small particle number or spacial restrictions, e.g. in a lattice gas)

Ising-type interaction effectively leads to a dephasing environment

Lindblad master equation using the Markov-approximation (large collisional phases, many background gas particles)

Note, exact results via
$$\rho_{s_A,s_A'}(t) = C_{s_A,s_A'}(t)\rho_{s_A,s_A'}(0)$$

$$\dot{
ho} = -i[H_{int},
ho] + \mathcal{L}_{deph}
ho$$

$$= \gamma \sum_{k=1}^{N} \left[\sigma_z^{(k)}
ho \sigma_z^{(k)} -
ho \right]$$

The reset mechanism

Problem: entanglement is first built up

but also quickly destroyed

due to the environment

Solution: reset phases (and kill entanglement)

between system and environment

Reset the state of particles in a certain region back to initial state (local operation on particles, does not introduce entanglement)

or replace particles with fresh one (e.g. just as in a cell), i.e. get rid of entropy.

Result: All existing entanglement is destroyed environment,
both between system particles and between system and environment
=> fresh entanglement between system particles is created

The reset mechanism

Particle *k* is reset: $\rho_k \to \rho_{reset} = |\chi\rangle\langle\chi|$

$$ho
ightarrow |\chi
angle \langle \chi|_k \otimes \operatorname{Tr}_k
ho$$

Reset term in the Lindblad master equation:

$$\mathcal{L}_{reset}\rho = \sum_{k=1}^{N} r(|\chi_k\rangle\langle\chi_k|\operatorname{Tr}_k\rho - \rho)$$
reset rate

Regions of persistent entanglement around the reset area => non-equilibrium structure

Reset mechanism drives the quantum system out of the equilibrium state

Entanglement dynamics of two particles

Steady-state entanglement

Generalizations

[Hartmann et al., PRA (2006)]

Details change Main features robust!

5 qubits, average negativities

Summarizing the toolbox ingredients

- Quantum systems driven by classical dynamics (mixed quantum/classical, i.e. semi-quantal model)
- Entangling interaction (accessible Hilbert space large enough)
- Strong decoherence mechanism
- Few/no symmetries
- Simple reset mechanism

(external field or any dissipative structure to reduce entropy)

- Reset process drives/maintains system away from equilibrium
 - => Only then entanglement exists

Be aware: classical probabilistic rate equations might fail!

Ingredients simple enough to exist in biology

Some references...

Spin gases

Calsamiglia et al., PRL **95**, 180502 (2005)

Calsamiglia et al., Int. J. Quant. Inf. **5**, 509 (2007)

non-Markovian aspects:

Hartmann et al., PRA 72, 052107 (2005)

proposal for ultra-cold atoms:

Jaksch et al., PRL 82, 1975 (1999)

and experimental work based thereon

Reset mechanism and non-equil. aspects:

Hartmann et al., PRA **74**, 052304 (2006) Hartmann et al., N. J. Phys. **9**, 230 (2007)

Weighted graph states and applications to spin systems

Hartmann et al., J. Phys. B. 40, S1 (2007)

Dür et al., PRL **94,** 0907203 (2005)

Lecture notes:

Hein et al., arXiv/quant-ph/0602096 (2006)