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1 The Lindblad theory for open quantum systems and its
extension

Abstract

We recall the Lindblad structure of the master equation for an open quantum system,

which describes the dynamics in the Markovian case. We will consider in particular the

issue of complete positivity, pointing to extensions of the Lindblad theory which describe

non-Markovian systems and still ensure a well-defined dynamics. Examples will be pro-

vided of this generalized Lindblad structure.

1.1 Dynamics of open quantum systems

As basic setting we consider a system with state ρS and Hamiltonian HS in interaction through
V with an environment having state ρE and Hamiltonian HE. The total state is given by ρ ∈
TC(HS ⊗HE), with ρ= ρ†, ρ> 0, TrS+Eρ=1 so that

TrSρ= ρE TrEρ= ρS.

Our basic aim is to eliminate the degrees of freedom of the environment to obtain effective equa-
tions of motion, let us say master equations, for the system only.

Working hypotheses:
i) factorized initial state

ρ = ρS ⊗ ρE ,

an hypothesis which essentially cannot be released to obtain a physically well-defined closed
effective dynamics;

ii) overall unitary dynamics

ρ(t) = U(t)ρ(0)= e−iHtρ(0)e+iHt,

hypothesis which could be released allowing e.g. for a semigroup dynamics ρ(t) = etLρ(0) for the
whole system.

For fixed ρE we then have the commutative diagram

ρS(0) ⊗ ρE

TrE

��

U(t) // ρ(t)

TrE

��
ρS(0)

A

OO

Φ(t) // ρS(t)

where A is called assignment map

A: T C(HS) � T C(HS ⊗HE)

ρS  ρS ⊗ ρE

linear, positive, and such that TrE ◦A=1TC(HS). Indeed for fixed ρE the assignment

ρS(0) � ρS(t)= Φ(t)ρS(0) =TrE
{

U(t)ρS(0)⊗ ρEU
†(t)
}

is a linear map which preserves hermiticity and trace, further sending positive operators to posi-
tive operators, therefore in particular sending states to states: let us call it quantum dynamical
map. Actually Φ(t) for any t is a completely positive and trace preserving (CPT) map or
quantum channel, since it can be written in Kraus form as

Φ(t)σ =
∑

αβ

Wαβ(t)σWαβ
†

(t)

The Lindblad theory for open quantum systems and its extension 3



with
∑

αβ
Wαβ

† (t)Wαβ(t) = 1, Wαβ(t) = λβ

√

〈ϕα|U(t)|ϕβ〉 with λβ > 0,
∑

β
λβ = 1 and {ϕβ}

SONC in HS.

Exercise: verify these relations, are the Wαβ(t) unique?

Exercise: verify that Φ(t) is CPT even when U(t) is CPT but not necessarily

unitary

The Kraus form implies complete positivity (CP) according to the definition:

Φ: T C(HS) � T C(HS)

is CP provided

Φ⊗1: T C(HS ⊗Cn) � T C(HS ⊗Cn)

is positive for all n ∈ N (or up to the dimension of HS in the finite dimensional case). The dif-
ference between postivity and CP can be detected considering entangled states.

The map Φ acting on the states is CP iff is CP the adjoint map Φ′ acting on observables
according to the duality form Tr

{

B†σ
}

with B ∈B(HS) and ρ∈TC(HS)

Tr{BΦ[σ]} = Tr{Φ′[B]σ}.

Exercise: write the adjoint map of Φ[σ] =
∑

i
AiσAi

†

Exercise: what does trace preservation of Φ implies for Φ′ ?

Equivalent formulations of the CP condition are:

i) Φ′⊗1 is positive for all n∈N

ii) the condition

∑

i,j=1

n

〈ψi|Φ
′
(

Bi
†
Bj

)

|ψj〉> 0 ∀n∈N, ∀{ψi}⊂HS , ∀{Bi}⊂B(HS)

holds.

Exercise: prove that the two formulations of the CP condition are equivalent

Exercise: check that a unitary evolution is CP

Note the equivalence between the following statements:

1. Φ is CP according to either of the two equivalent definitions

2. Φ can be written in Kraus form: Φ[σ] =
∑

i
AiσAi

†

3. Φ can be obtained from an overall unitary evolution for certain HE, ρE and U : Φ[σ] =
TrE

{

Uσ⊗ ρEU
†}

1.2 Quantum dynamical semigroups

An explicit general characterization of quantum dynamical map is known only for special cases.
An important and general class is obtained assuming a semigroup composition law for the
quantum dynamical map as a function of the time argument

Φ(t+ s) = Φ(t) ◦Φ(s) ∀t, s> 0

where each Φ(t) is a CPT map. This is called the (time-homogeneous) Markovian case. A one-
parameter group of unitary operators according to Stone’s theorem is described by its generator
given by a self-adjoint operator. Likewise for a semigroup of contraction operators a generator
characterized by the Hille-Yosida theorem exists such that

Φ(t) = etL.

4 Section 1



If for any t the map is CP then the collection of these maps is called a quantum dynamics semi-
group (QDS).

Physical conditions allowing for semigroup dynamics are typically given by

τE ≪ τS

i.e. environment correlation time (decay time of correlation function) much shorter than relax-
ation time of reduced system. Equivalently, in the notation to be used later on,

γ0≪ λ

i.e. relaxation rate much less than bandwidth of the bath or width of its spectral density.

This separation of time scales (so called Markov condition) together with weak coupling (so
called Born approximation), which also justifies the choice of a factorized intial state, typically
allows for a description of the dynamics in terms of a QDS.

The characterization of the structure of the generators of QDS is given by the famous Gorini
Kossakowski Sudarshan Lindblad theorem. Its finite dimensional version reads:

Theorem (GKSL) Let dim HS = N , a linear operator L: T C(HS) � T C(HS) is the gener-

ator of a QDS, that is to say a one-parameter continuous semigroup of CPT maps Φ(t) = etL iff
it is of the form

L[ρ] = − i[H, ρ] +
∑

k=1

N2−1

γk

[

LkρLk
† −

1

2

{

Lk
†
Lk, ρ

}

]

with γk> 0; H =H †, Lk ∈B(HS).

The result extends to infinite dimensional Hilbert spaces provided one asks for norm conti-
nuity of Φ(t). Most importantly it is a necessary and sufficient condition. We give an idea of the
proof, pointing to extensions of the sufficient condition to account for more general situations.

Necessary condition

If Φ(t) is CPT, according to the Kraus representation at any time it can be written as

Φ(t)[ρ] =
∑

i
Ai(t)ρAi

†(t) with
∑

i
Ai

†(t)Ai(t) = 1. Writing the Ai(t) in terms of an orthonormal

basis {Fi}i=1,	 ,N2, with FN2 =
1

N
√ , such that TrHS

FiFj = δij, one has

Φ(t)[ρ] =
∑

i,j=1

N2

cij(t)FiρFj
†

with cij(t) a positive matrix. We know that the generator exists and is given by

lim
ε→0+

Φ(ε)−1

ε
[ρ] = L[ρ].

Relying on the existence of the limit and imposing trace preservation one obtains the following
form for the generator

L[ρ] = − i[H, ρ] +
∑

k,l=1

N2−1

akl

[

FkρFl
†−

1

2

{

Fl
†
Fk, ρ

}

]

,

where H =H †, and akl = limε→0
ckl(ε)

ε
is a positive matrix known as Kossakowski matrix (akl =

limε→0 ckl(ε)/ε).

Diagonalization of the positive matrix leads to an explicit Lindblad form. In Schrödinger pic-
ture

L[ρ] = − i[H, ρ] +
∑

k=1

N2−1

γk

[

LkρLk
† −

1

2

{

Lk
†
Lk, ρ

}

]

corresponding to the Heisenberg picture

L′[X ] = + i[H,X ] +
∑

k=1

N2−1

γk

[

Lk
†
XLk −

1

2

{

Lk
†
Lk, X

}

]

,

The Lindblad theory for open quantum systems and its extension 5



which can be equivalently be written in socalled standard form by means of the CP map

Ψ[X] =
∑

k=1

N2−1

γkLk
†
XLk

as follows

L′[X ] = + i[H,X] + Ψ[X ]−
1

2
{Ψ[1], X}.

The {Lk} are typically called Lindblad operators.
Sufficient condition I
We want to see that a generator in Lindblad form leads to a CP map. Preservation of her-

miticity and trace is immediately checked, we show CP pointing to a perturbation expansion of
the solution. Let us put L=LR +LJ, sum of a relaxing and jump part, according to

LR[ρ] = − i[H, ρ]−
1

2

{

∑

k

γkLk
†
Lk, ρ

}

= − i
(

Heffρ− ρHeff
†
)

LJ[ρ] =
∑

k

γkLkρLk
†

with LJ a CP map. We know that

d

dt
ρ(t) = Lρ(t)

and therefore due to ρ(t)= Φ(t)ρ(0) also

d

dt
Φ(t) = LΦ(t) Φ(0)=1.

Denoting by R(t) the solution of the relaxing part

d

dt
R(t) = LRR(t) R(0)=1

given by

R(t)[ρ] = eLRt[ρ] = e−iHefftρe+iH
eff

†
t

one has

Φ(t) = R(t)+

∫

0

t

dτR(t− τ )LJΦ(τ )

= eLRt +

∫

0

t

dτeLR(t−τ)LJΦ(τ)

= R(t)+ (R ⋆LJΦ)(t).

This equation is of the form G=G0 +G0VG and is solved by the Dyson series

Φ(t) = R(t) + (R ⋆LJR)(t)+ (R ⋆LJR ⋆LJR)(t) +	
which is a CP map by construction, because such are R(t) and LJ. Appearently it is enough to
ask R(t) and LJR(t) to be CP, but the inverse of R(t) is also CP, so that this requirement is
not weaker. The solution of the master equation can thus be explicitly written as a jump expan-
sion as follows

ρ(t) = Φ(t)ρ(0)

= R(t)ρ(0)+
∑

n=1

∞ ∫

0

t

dtn	 ∫
0

t2

dt1R(t− tn)LJR(tn− tn−1)	LJR(t1)ρ(0).

Exercise:verify explicitly that the Dyson expansion is solution of the Lind-

blad master equation

Sufficient condition II
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The proof still works if we allow the operators appearing in the Lindblad structure as well as
the decay rates γk to become time dependent, provided the latter always stay positive. This sit-
uation corresponds to a time-inhomogeneous Markovian case. Starting from

d

dt
Φ(t) = L(t)Φ(t)

with Φ(t) ≡ Φ(t, 0) and the initial condition Φ(t, t) = 1, we can still consider a relaxing part
LR(t) and a jump part LJ(t), where the latter still is a CP map thanks to the positivity of the
γk(t). As done before starting from the solution of the time-local master equation

d

dt
R(t, s) = LR(t)R(t, s)

where R(t)≡R(t, 0), R(t, t)=1 and t> s> 0, given by

R(t, s) = TO exp

( ∫

s

t

dτLR(τ )

)

where TO denotes the chronological time ordering. This is a CP map satisfying the two-time
composition law

R(t, τ ) ◦R(τ , s) = R(t, s) ∀t> τ > s.

As a result we can still write a Dyson expansion for the time evolution map, whose very struc-
ture ensures CP of the time evolution. One has

ρ(t) = Φ(t)ρ(0)

= R(t)ρ(0)

+
∑

n=1

∞ ∫

0

t

dtn	 ∫
0

t2

dt1R(t, tn)LJ(tn)R(tn, tn−1)	R(t2, t1)LJ(t1)R(t1)ρ(0),

and therefore a time evolution map characterized by two time indexes, satisfying the composi-
tion law

Φ(t, τ ) ◦Φ(τ , s) = Φ(t, s) ∀t> τ > s

where each of the maps Φ(t, s) is CP and can be written as

Φ(t, s) = TO exp

( ∫

s

t

dτL(τ )

)

.

This kind of time local master equations arise e.g. in the time-convolutionless projection oper-
ator technique.

Sufficient condition III
A further extension of the validity of this sufficient condition can be obtained considering

master equations of integrodifferential form. Let us consider an equation of the form

d

dt
ρ(t) =

∫

0

t

dτL(t− τ )ρ(τ )

where again the operator part has the typical structure ensuring preservation of hermiticity and
trace

L(τ)ρ = − i[H(τ ), ρ] +
∑

k

γk(τ)

[

Lk(τ )ρLk
†(τ )−

1

2

{

Lk
†(τ)Lk(τ ), ρ

}

]

.

Considering the usual splitting L(τ) =LR(τ )+LJ(τ ), we have the evolution equations

d

dt
Φ(t) =

∫

0

t

dτL(t− τ )Φ(τ ) Φ(0)=1

for the whole dynamics and

d

dt
R(t) =

∫

0

t

dτLR(t− τ )R(τ ) R(0)=1

The Lindblad theory for open quantum systems and its extension 7



for the relaxing part. The Laplace transformed equations

Φ̂(u) =
1

u−
(

L̂R(u) + L̂J(u)
)

and

R̂(u) =
1

u− L̂R(u)

lead to the Dyson equation

Φ̂(u) = R̂(u)+ R̂(u)L̂J(u)Φ̂(u)

or going back in the time domain

Φ(t) = R(t)+ (R ⋆LJ ⋆Φ)(t),

which is solved once again by a Dyson series expansion

Φ(t) = R(t)+ (R ⋆LJ ⋆R)(t) + (R ⋆LJ ⋆R ⋆LJ ⋆R)(t)+	 .
Note that at this point we can still say nothing about CP of Φ(t). However this formal expan-
sion of the solution tells us that if we can show that R(t) and LJ(t) are CP, then Φ(t) is CP.
The same holds under the weaker condition that R(t) and (R ⋆LJ)(t) are CP.

This kind of generalized master equations arise in the Nakajima-Zwanzig projection operator
technique.

1.2.1 Example

Two-level atom interacting with radiation field at given temperature. The system is described in
HS =C2, with Hamiltonian HS =ω0σ+σ− and Lindblad generator

d

dt
ρ = − i[HS , ρ] + γ0(Nβ + 1)

[

σ−ρσ+−
1

2
{σ+σ−, ρ}

]

+ γ0Nβ

[

σ+ρσ−−
1

2
{σ−σ+, ρ}

]

where γ0 is the spontaneous emission rate, Nβ the mean number of photons in the electromag-
netic field at inverse temperature β at the resonant frequency ω0. The first term describes
induced and spontaneous emission, the second induced absorption. There are only two Lindblad
operators

γ1L1 = γ0(Nβ + 1)
√

σ−

γ2L2 = γ0Nβ

√

σ+.

This master equation can describe dynamics of populations and coherences, spectrum of emitted
radiation, statistics of photon detection.

1.2.2 Example

Massive test particle interacting with background gas. The system is described in HS = L2
(

R3
)

,

with Hamiltonian HS =
p̂2

2M
and Lindblad generator

d

dt
ρ(t) = − i[HS , ρ] +Γ

∫

dqP(q)
[

eiqx̂ρeiqx̂ − ρ
]

where Γ is the collision rate, P(q) the probability distribution of momentum exchanges, which in

Born approximation reads ΓP(q) = (2π)
4
ngas

∣

∣

∣
Ṽ (q)

∣

∣

∣

2
, with V (x − y) the interaction potential.

There is a continuum of Lindblad operators

γ(q)L(q) = ΓP(q)
√

eiqx̂

8 Section 1



This master equation can describe collisional decoherence. If extended to account for energy
transfer it also describes quantum Brownian motion and thermalization effects, giving a
quantum counterpart of the classical linear Boltzmann equation.

1.3 Generalized Lindblad structure

Consider a situation in which one has a tripartite Hilbert space, so that you have some freedom
in setting the border between system and environment, including the ancillary degrees of
freedom in either of the two. As a result the interaction between what you consider as system
and environment is mediated by unobserved degrees of freedom, which can be exploited to
provide a finer characterization of the bath. Building on the latter example of collisional deco-
herence, let us consider a massive particle with internal degrees of freedom interacting through
collisions with a gas, so that the Hilbert space for the overall system is given by

HCM⊗HINT⊗HGAS = L2
(

R3
)

⊗Cn ⊗FB

(

L2
(

R3
))

.

Taken

HS = HCM =L2
(

R3
)

consider a quantum-classical description on HCM ⊗ HINT, that is to say among all the possible
states in T C(HCM⊗HINT) consider block diagonal ones ̺∈TCdiag(HCM⊗HINT) of the form

̺ =
∑

α=1

n

ρα ⊗ |α〉〈α|,

with ρα ∈ T C(HCM), corresponding to a classical description for the internal degrees of freedom,
which have decohered more quickly or have been prepared in a state which does not exhibit
coherences. The dual space is given by B ∈Bdiag(HCM⊗HINT) of the form

B =
∑

α=1

n

Bα ⊗ |α〉〈α|,

with Bα∈B(HCM). These are the observables whose statistics can be described according to

〈B 〉̺ =
∑

α=1

n

TrCM{Bαρα}.

Now we consider a Markovian master equation on HCM ⊗ HINT which provides a CP dynamics
given by a QDS on this space, however preserving the block diagonal structure of the states.
Otherwise stated we look for a dynamics of the operators ρα (with ρα > 0, TrCMρα 6 1,
∑

α
TrCMρα =1), which can be embedded into a Lindblad dynamics on the extended space.

Theorem (Breuer) The generator L of a QDS on HCM⊗HINT which sends block diagonal
states into block diagonal states, that is such that

eLt

(

∑

α=1

n

ρα(0)⊗ |α〉〈α|

)

=
∑

α=1

n

ρα(t)⊗ |α〉〈α|

can be written as

L

[

∑

α=1

n

ρα⊗ |α〉〈α|

]

=
∑

α=1

n

Lα(ρ1,	 , ρn)⊗ |α〉〈α|

where the operators Lα determine the coupled dynamics of the ρα according to

d

dt
ρα = Lα(ρ1,	 , ρn)ρα

= − i[Hα, ρα] +
∑

λ

∑

β=1

n [

Rλ
αβ
ρβRλ

αβ†−
1

2

{

Rλ
βα†Rλ

βα
, ρα

}

]

,

with Hα =Hα† and Rλ
βα operators on HCM.

Necessary condition

The Lindblad theory for open quantum systems and its extension 9



Suppose given a Lindblad master equation on HCM⊗HINT, then it has to be of the form

L[ρ] = − i[H, ρ] +
∑

λ

[

RλρRλ
† −

1

2

{

Rλ
†
Rλ, ρ

}

]

where without loss of generality

H =
∑

αβ

Hαβ ⊗ |α〉〈β |

Rλ =
∑

αβ

Rλ
αβ ⊗ |α〉〈β |

are operators on HCM⊗HINT with H self-adjoint. Inserting this expression into the generator it
can be written as

L̺ =
∑

αβ

Dαβ(ρ1,	 , ρn)⊗ |α〉〈β |

with

Dαβ(ρ1,	 , ρn) = − i
(

Hαβρα − ρβH
αβ
)

+
∑

λ

∑

γ

[

Rλ
αγ
ργRλ

βγ†−
1

2
Rλ

γα†
Rλ

γβ
ρβ −

1

2
ραRλ

γα†
Rλ

γβ

]

and the constraint to preserve block diagonal states implies Dαβ = 0 for α � β, together with
Dαβ =Lα, with H

α =Hαα self-adjoint.
Sufficient condition
Given Lα as above the operators

H =
∑

α

Hα ⊗ |α〉〈α|

Sλ
αβ = Rλ

αβ ⊗ |α〉〈β |

allow us to build a Lindblad generator

L[ρ] = − i[H, ρ] +
∑

λ

∑

αβ

[

Sλ
αβ
ρSλ

αβ†−
1

2

{

Sλ
αβ†

Sλ
αβ
, ρ
}

]

which leaves the space of block diagonal states invariant.
As a result this generalized Lindblad structure provides a Markovian dynamics at the level of

the subcollections {ρ1, 	 , ρα, 	 , ρn}, but a non-Markovian one for the overall state w obtained
by tracing over the internal degrees of freedom considered as part of the environment and unde-
tected in the final measurement. One has a well-defined dynamics

w(0) =
∑

α=1

n

ρα(0)=TrINT

(

∑

α=1

n

ρα(0)⊗ |α〉〈α|

)

→ w(t)=
∑

α=1

n

ρα(t)

which is non-Markovian and cannot be obtained through a closed evolution equation for w alone
according to the non commutativity of the following diagram

̺(0) = (ρ1(0), . . . , ρn(0))

TrINT

��

exp(tL)// ̺(t) = (ρ1(t), . . . , ρn(t))

TrINT

��
w(0) =

∑n
α=1 ρα(0)

6

OO

6 // w(t) =
∑n

α=1 ρα(t)

The diagram is non commutative because the initial state on the extended space HCM ⊗
HINT is not factorized, rather classically correlated.

This is an istance of a general fact: reducing the considered/observed number of degreees of
freedom leads from a Markovian to a non-Markovian dynamics and viceversa.

10 Section 1



This kind of generalized master equations arise in projection operator techniques if one con-
siders projections on classically correlated states.

1.3.1 Example

Consider a massive particle with internal degrees of freedom and the collisional decoherence
dynamics arising when the scattering cross section depends on the internal state, and the initial
preparation is diagonal in the internal states. Then the generalized Lindblad structure takes the
form

d

dt
ρi =

∑

j

∫

dqP ij(q)
[

Γijeiqx̂ρje
iqx̂ −Γjiρi

]

where Γij denote the collision rate for the transition j → i and P ij(q) denote the probability
density of momentum transfer for the transition j→ i.

n=1
Standard Lindblad

d

dt
〈x|ρ(t)|y〉 = −Γ[1−ΦP(x− y)]〈x|ρ(t)|y〉

where

ΦP(x− y) =

∫

dqP(q)eiq(x−y)

with solution

〈x|ρ(t)|y〉 = e−Γ[1−ΦP(x−y)]t〈x|ρ(0)|y〉= Ψ(x− y, t)〈x|ρ(0)|y〉

suppression of off-diagonal matrix elements exponential in time determined by characteristic
function of compound Poisson process.

n>1
Assuming no degeneracy and elastic scattering, for ρi(0) = piw(0) the generalized Lindblad

structure leads to

〈x|w(t)|y〉 =
∑

i

pie
−Γii[1−ΦPii

(x−y)]t〈x|w(0)|y〉= Ψ(x− y, t)〈x|w(0)|y〉

and simple Markovian exponential behaviour in time is immediately lost, allowing for oscilla-
tions and more pronounced decoherence beavior.

The ancillary degrees of freedom naturally provide a classical label over which one takes the
trace, since this classical label helps in characterizing the initial state but is not observed in the
final measurement. One can thus keep into account the modification of the interaction between
system and environment due to a classical intermediate degrees of freedom or fine structure of
the reservoir (e.g. band structure).

1.4 References

For this part see mainly [Breuer2007, Holevo2001, Gorini1976a, Lindblad1976a, Esposito2003a,
Esposito2007a, Budini2006a, Breuer2007a, Vacchini2008a, Vacchini2009a, Vacchini2010a,
Smirne2010a]

2 Non-Markovian dynamics and memory kernels

Abstract

We construct a class of master equations with memory kernel, for which sufficient condi-

tions to ensure complete positivity of the dynamics can be formulated. A probabilistic

interpretation of these kernels will be given, showing that they provide the quantum coun-

terpart of classical semi-Markov processes, which describe memory effects and include

Markov processes as a special case.

Non-Markovian dynamics and memory kernels 11



2.1 Classical semi-Markov processes

Given a master equation in Lindblad form

L[ρ] = − i[H, ρ] +
∑

k

γk

[

LkρLk
† −

1

2

{

Lk
†
Lk, ρ

}

]

if the populations in a given basis obey closed evolution equations, the diagonal matrix elements
Pn = 〈n|ρ|n〉 obey the following Pauli master equation for a classical jump Markov process

d

dt
Pn(t) =

∑

m

[ΓnmPm −ΓmnPn],

where the positive rates can be expressed as

Γnm =
∑

k

γk|〈n|Lk|m〉|
2
.

Remaining first at classical level one can ask whether a similar result is available for a wider
class of processes including non-Markovian ones. Quantum mechanics actually is a probability
theory, and it is certainly worth to further exploit ideas coming from classical probability
theory. Indeed a generalized master equation given by an integrodifferential rate equation can
be considered for a class of classical processes known as semi-Markov processes. They arise
merging Markov chains and renewal processes. In a Markov jump process one has certain transi-
tion probabilities among sites πij (

∑

i
πij = 1) and a waiting time distribution in between jumps

given by an exponential distribution f(τ ) = λe−λτ . The latter distribution has the memoryless
property, which denoting by τn the time of the n-th jump can be written as

P {τn> t+ s|τn>s} =
P {τn> t+ s}

P {τn>s}
= e−λnt

so that the time already spent in a given state is immaterial. If one allows for a generic waiting
time distribution, as appears in a renewal process, one obtains a class of non-Markovian jump
processes in continuous time known as semi-Markov processes. They obey the socalled semi-
Markov property

P {Xn+1 = j , Tn+1−Tn ≤ τ |X0, T0, X1, T1, ...Xn, Tn} = P {Xn+1 = j , Tn+1−Tn ≤ τ |Xn}

with Xn state entered at the n-th jump and Tn time of the n-th jump. The process is character-
ized by the probability density to make the jump n→m

qmn(τ ) = πmnfn(τ)

normalized according to

∑

m

∫

0

+∞
dτ qmn(τ )= 1

with state dependent waiting time distributions fn(τ ) and related survival probability

gn(τ) =1−

∫

0

τ

ds fn(s).

The Markovian case is recovered for fn(τ ) = λne−λnτ and gn(τ ) = e−λnτ . The transition proba-
bilities of the process can still be shown to obey a generalized master equation given by

d

dt
Pn(t) =

∫

0

t

dτ
∑

m

[Wnm(τ )Pm(t− τ )−Wmn(τ )Pn(t− τ )]

with Wmn(t) = πmnkn(t). The kn(t) are memory functions without a direct physical meaning,
but related to waiting time distribution and survival probability according to

fn(τ )=

∫

0

τ

ds kn(s)gn(τ − s) = (kn ∗ gn)(τ )

ġn(τ )=−

∫

0

τ

ds kn(s)gn(τ − s)=− (kn ∗ gn)(τ )

12 Section 2



or in Laplace transform

k̂n(u) =
f̂n(u)

ĝn(u)

k̂n(u) =
uf̂n(u)

1− f̂n(u)

2.1.1 Examples

1) Consider a waiting time distribution corresponding to the sum of i.i.d. random variables with
equal/different parameters λn corresponding to socalled Erlang/generalized Erlang distributions.

For n=1, parameter λ1 =λ, we have an exponential waiting time distribution, so that

kn(t) → 2λnδ(t),

a Markov process is recovered and the generalized master equation becomes a standard master
equation with Γnm = πnmλn > 0, so that they can be interpreted as transition probabilities per
unit time.

For n=2, parameters λ1, λ2, we have from the convolution of two exponential distributions

f(τ )=
λ1λ2

λ2−λ1
(e−λ1τ − e−λ2τ) k(t) =λ1λ2e

−(λ1+λ2)t,

where the latter kernel can be written as

k(t) = κe−γt

provided we have

γ2− 4κ> 0,

so that

λ1,2 =
γ

2
±

1

2
γ2− 4κ

√

are positive parameters, and correspondingly

f(τ) = e−γt/2

[

cosh

(

γt

2
δ

)

+
1

δ
sinh

(

γt

2
δ

)]

with

δ = 1− 4
κ

γ2

√

.

For greater n one typically has kernels k(t) which take on negative values. Indeed k(t) need not
be always positive in order to ensure the survival probability to be monotonically non-
increasing.

2) Consider a waiting time distribution given by the convex mixture of exponential distribu-
tions.

For n=2, parameters λ1, λ2, weights p, 1− p

f(τ )= pλ1e−λ1τ + (1− p)λ2e−λ2τ k(t) = 〈λ〉

[

2δ(t)−
∆λ2

〈λ〉
e−(pλ2+(1−p)λ1)t

]

.

2.2 Quantum semi-Markov processes

We now export these ideas to the quantum framework, building on the classical input to under-
stand the memory kernel and on the previously introduced sufficient condition to ensure a CP
dynamics. The point is to extend the generalized master equation to cope not only with popula-
tions but also with coherences.

Consider as before the structure

d

dt
ρ(t) =

∫

0

t

dτL(t− τ )ρ(τ )

Non-Markovian dynamics and memory kernels 13



with

L(τ)ρ = − i[H(τ ), ρ] +
∑

k

γk(τ)

[

Lk(τ )ρLk
†(τ )−

1

2

{

Lk
†(τ)Lk(τ ), ρ

}

]

.

and the usual splitting L(τ )=LR(τ )+LJ(τ ).

Suppose that the relaxing part can be diagonalized in a fixed basis

H(τ ) =
∑

n

εn(τ)|n〉〈n|

∑

k

γk(τ )Lk
†
(τ)Lk(τ ) =

∑

n

kn(τ )|n〉〈n|

and γk(τ )> 0 so that LJ(τ ) is a CP map and kn(τ )> 0. We can now write the explicit solution
for the relaxing part in terms of matrices of functions

R(t)ρ(0)=
∑

nm

gnm(t)|n〉〈n|ρ(0)|m〉〈m|

solutions of

ġnm(t)=−

∫

0

t

dτ [zn(τ )+ zm
∗ (τ )]gnm(t− τ ) zn(τ) =

1

2
kn(τ )+ iεn(τ )

with initial condition gnm(0)= 1. The map R(t) can be written in Kraus form provided

G(t) = (gnm(t))> 0.

Exercise: verify this CP condition

But this requirement implies in particular that the diagonal matrix elements are positive, so
that gnn(t) > 0, which together with kn(t) > 0 allows to read the gnn(t) as survival probability
associated thorugh kn(t) to a well-defined waiting time distribution, thus fixing a classical semi-
Markov process. The requirement G(t) > 0 is a natural extension of the classical condition to
cope with coherences.

If this condition is satisfied, then according to

Φ(t) = R(t)+ (R ⋆LJ ⋆R)(t) + (R ⋆LJ ⋆R ⋆LJ ⋆R)(t)+	 .
the dynamics is CP and therefore well-defined.

Exercise: see what happens in the Markovian case

2.2.1 Example

If kn = k ∀n the anticommutator part is proportional to the identity and we are left with

L(τ )ρ = k(τ )[Eρ− ρ]

where E is a CPT map. Coming back to the previous decoherence example we consider

Eρ =

∫

dqP(q)eiqx̂ρeiqx̂

and CP is granted provided the function g(t), related to the memory kernel according to ġ(τ ) =
− (k ∗ g)(τ ) allows for a probabilistic reading. At any jump we apply the same operation E , so
that the underlying classical process is a renewal process, characterized by the waiting time dis-
tribution f(τ ) obtained from

f̂ (u) =
k̂(u)

u+ k̂(u)
.

The master equation reads

d

dt
ρ(t) =

∫

0

t

dτk(t− τ )[Eρ(τ )− ρ(τ )],
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and its solution obeys the Dyson equation

ρ(t) = g(t)ρ(0) +

∫

0

t

dτf(t− τ )Eρ(τ),

with jump expansion

ρ(t) = p0(t)ρ(0)+
∑

n=1

∞ ∫

0

t

dtn	 ∫
0

t2

dt1f(t− tn)Ef(tn − tn−1)	 f(t2− t1)Ep0(t1)ρ(0)

=
∑

n=1

∞
pn(t)Enρ(0)

with pn(t) number of events up to time t, p0(t) = g(t) and for a general renewal process

pn(t)=

∫

0

t

dτf(t− τ )pn−1(τ ).

For a Poisson distribution pn(t)=
(λt)

n

n!
e−λt, and one recovers the Markovian case.

For the position matrix elements this leads to

〈x|ρ(t)|y〉 =
∑

n

pn(t)ΦP
n (x− y)〈x|ρ(0)|y〉= Ψ(x− y, t)〈x|ρ(0)|y〉

with Ψ(x− y, t) characteristic function of renewal-reward process.
Exercise: verify the above solution working in Laplace transform, and consider

the position matrix elements

The suppression of off-diagonal matrix elements has two typical regimes. For Ψ(d, t) with
d≫ d0, where d0 is the relevant scale settled by P(q), we have strong decoherence, a single inter-
action event already suppresses the off-diagonal matrix element

Ψ(d, t)D p0(t)= g(t)

and the relevant quantity is the survival probability, exponential in time for the Markovian case.
For Ψ(d, t) with d≪ d0 we have weak decoherence, many interaction events build up the overall
effect and exploiting the central limit theorem for renewal processes we have

Ψ(d, t)D exp

[

−
1

2

(

∆q2 +
σ2

µ2
〈q〉2

)

t

µ
d2 + i〈q〉

t

µ
d

]

with µ, σ mean and variance of the waiting time distribution (related by σ2 = µ2 for the Marko-
vian case), while 〈q〉,∆q denote mean and variance of P(q).

2.2.2 Example

Consider a master equation for a two-level system of the form

L(τ )ρ = − iε(τ )[σ+σ−, ρ] + k(τ )

[

σ−ρσ+−
1

2
{σ+σ−, ρ}

]

so that k+ = k, k−= 0, ε+ = ε, ε
−

= 0. The matrix reads

G(t)=

(

g++(t) g+−(t)
g+−
∗ (t) 1

)

and therefore the sufficient condition for CP becomes

g++(t)≥ |g+−(t)|2,

which actually turns out to be also necessary, as seen from an exact solution.

Exponential memory kernel
For ε(τ )= 0 and k(τ) =κe−γτ

L(τ )ρ = κe−γτ

[

σ−ρσ+−
1

2
{σ+σ−, ρ}

]
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the sufficient condition is satisfied for γ2− 4κ> 0, which is the classical condition to read a semi-
Markov process from the diagonal matrix elements, but this condition now is both necessary and
sufficient. A similar condition γ2 − 4nκ > 0 applies for the convolution of the Lindblad master
equation for the damped harmonic oscillator with an exponential memory kernel

L(τ)ρ = κe−γτ

[

aρa†−
1

2

{

a†a, ρ
}

]

but now due to the infinite dimensionality of the Hilbert space the condition is never satisfied.

Negative memory kernel still granting CP
Assume the relaxation part is diagonalized as before, but the γk and therefore the kn are no

more necessarily positive. As a consequence LJ(τ ) is no more CP. We can then exploit the
weaker requirement R ⋆LJ to be CP. Setting

LJ(τ) =
∑

l

kl(τ )J l

with J l CP the condition can be explicitated. Due to

(R ⋆LJ)(t)ρ(0) =

∫

0

t

dτR(t− τ )
∑

l

kl(τ )J lρ(0)

=
∑

l

∑

nm

∫

0

t

dτgnm(t− τ )kl(τ )�
fnm

l (t)

|n〉〈n|J lρ(0)|m〉〈m|

the conditions

F l(t)=
(

fnm
l (t)

)

> 0 ∀l

G(t) = (gnm(t))> 0

together ensure CP, granting in particular a classical probabilistic reading for the diagonals

fnn
l (t) and gnn(t).

Necessary and sufficient condition for CP
Consider now εn =0 and

J nρ =
∑

m

πmn|m〉〈n|ρ|n〉〈m|

so that

L(τ )ρ =
∑

mn

πmnkn(τ )|m〉〈n|ρ|n〉〈m| −
1

2

∑

n

kn(τ ){|n〉〈n|, ρ}.

For this kernel populations and coherences decouple, so that the coherences are given as before
by

ρnm(t)= gnm(t)ρnm(0), n� m
while assuming the populations follow a classical semi-Markov process the diagonal matrix ele-
ments are given by

ρnn(t) =
∑

m

Tnm(t)ρmm(0)

with Tnm(t) classical transition probability. We thus have

ρ(t) =
∑

n�m

gnm(t)|n〉〈n|ρ(0)|m〉〈m|+
∑

mn

Tnm(t)|n〉〈m|ρ(0)|m〉〈n|

=
∑

nm

g̃nm(t)|n〉〈n|ρ(0)|m〉〈m|+
∑

n�m

Tnm(t)|n〉〈m|ρ(0)|m〉〈n|

with g̃nm(t) = (Tnn(t) − gnn(t))δnm + gnm(t). Given that Tnm(t)> 0 the necessary and sufficient
requirement for CP now becomes

G̃(t)= (g̃nm(t))≥ 0
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indeed weaker than

G(t) = (gnm(t))> 0

since it differs on the diagonals and the transition probability is greater or equal than the sur-
vival probability, unless one only has jumps in one direction.

This necessary and sufficient condition also helps in understanding phenomenological Ansatz.
Indeed an example in this framework is given by

K(τ )ρ = κ+e−γτ

[

σ−ρσ+−
1

2
{σ+σ−, ρ}

]

+κ−e−γτ

[

σ+ρσ−−
1

2
{σ−σ+, ρ}

]

,

the classical condition now reads
γ2

4
≥max {κ+, κ−}. A natural parametrization is given by

κ+ = γγ0(Nβ + 1)

κ− = γγ0Nβ

so that κ+ > κ− > 0. Exploiting the necessary and sufficient condition one sees that for κ− = 0
corresponding to T = 0 one never has CP, due to violation at short times, for T � 0 a well
defined CP dynamics is granted for not too low temperatures. Thus the analysis gives informa-
tion on the region of validity of the phenomenological Ansatz.

2.3 References

For this part see mainly [Breuer2007, Barnett2001a, Budini2004a, Shabani2005a, Budini2006a,
Maniscalco2006a, Maniscalco2007a, Breuer2008a, Breuer2009a, Kossakowski2009a,
Chruscinski2010a, Mazzola2010a, Haikka2010a]

3 Projection operator techniques

Abstract

We consider a general approach to the non-Markovian dynamics of open quantum systems.

This is based on projection operator techniques of nonequilibrium statistical mechanics,

which allow to recast the equations of motion of the system as a perturbation expansion.

Both the Nakajima-Zwanzig and the time-convolutionless approaches will be considered,

focusing on the model of a qubit coupled to a Bosonic reservoir.

3.1 Projection operators

The basic idea comes from nonequilibrium statistical mechanics: we have a complex system and
try to obtain a manageable dynamics by eliminating degrees of freedom by means of some pro-
jection operator, thus considering the dynamics or relevant variables only, to be described in
terms of effective master equations.

A projection operator is a map which sends states into states

P : ρ� ρ′=Pρ

which is linear, idempotent P2 = P , positive and trace preserving. Having in mind that H =
HS ⊗HE we consider projection operators of the form

P = 1S ⊗Λ

with Λ a CPT idempotent map on HE. This choice implies in particular that separable (pro-
duct) states are sent to separable (product) states, so that the space of separable (product)
states is invariant under P , no artificial entanglement is introduced. One exploits furthermore
the crucial property

ρS =TrEρ=TrEPρ

so that knowledge of the dynamics of the relevant part is enough to recover the reduced state
ρS. A representation theorem can be formulated for a projection operator as above.
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Theorem (Breuer) A projection operator with the above properties can be written as

Pρ =
∑

i

TrE{Aiρ}⊗Bi

with {Ai}, {Bi} linear independet sets of observables with the properties

1. TrE{AiBi}= δij

2.
∑

i
TrE{Bi}Ai =1E

3.
∑

i
Ai

T ⊗Bi> 0

3.1.1 Standard projection

Standard projection operator onto a factorized state is obtained for

A=1E B= ρE

for a fixed environmental state

Pρ = TrEρ⊗ ρE = ρS ⊗ ρE

3.1.2 Correlated projection

Correlated projection operator is obtained considering an orthogonal decomposition of unity in

HE according to Πi = Πi
†, ΠiΠj = δijΠi,

∑

i
Πi =1E, and defining

Ai = Πi Bi =
ΠiρEΠi

TrE{ΠiρE}
= ρE

i

with ρE
i collection of statistical operators obtained from fixed environmental state ρE

Pρ =
∑

i

TrE{ΠiρE}⊗
ΠiρEΠi

TrE{ΠiρE}
.

3.2 Projected equations of motion

For the overall complex system one has the Liouville von Neumann equation with H =H0 + αV

and therefore in interaction picture with V (t) = eiH0tV e−iH0t

d

dt
ρ(t) = − iα[V (t), ρ(t)]≡L(t)ρ(t).

We now use P and the complementary projection operator 1 − Q to write the statistical oper-
ator in terms of a relevant and irrelevat part ρ=Pρ+Qρ obeying

d

dt
Pρ(t) = PL(t)Pρ(t)+PL(t)Qρ(t)

d

dt
Qρ(t) = QL(t)Pρ(t)+QL(t)Qρ(t).

The second equation can be solved as

Qρ(t) = GQ(t, 0)Qρ(0)+

∫

0

t

dt1GQ(t, t1)QL(t1)Pρ(t1)

with

GQ(t, t1) = TO exp

( ∫

t1

t

dt2QL(t2)

)

,

where TO denotes chronological time ordering.
Substituting in the first equation and using the natural simplifying assumptions
i) Qρ(0)
ii) PL(t1)	L(t2n+1)P =0
one has

d

dt
Pρ(t) =

∫

0

t

dt1PL(t)GQ(t, t1)L(t1)Pρ(t1)
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and we want to obtain perturbation expansions of this equation, allowing for approximate solu-
tions, recalling that TrEPρ(t) = ρS(t). This equation is exact and different choices of P lead to
equations for different relevant states, which all lead to the same exact equation for ρS, though
rearranged in a non perturbative way. There are two ways to express the exact equations of
motion for the dynamics of ρ(t)= Φ(t)ρ(0):

Integrodifferential

d

dt
ρ(t) = (KNZ ⋆ ρ)(t) = (KNZ ⋆Φ)(t)ρ(0)

which in Laplace transform leads to

K̂NZ(u) = u1− Φ̂−1
(u)

Time local

d

dt
ρ(t) = KTCL(t)ρ(t) =KTCL(t)Φ(t)ρ(0)

with

KTCL(t) = Φ̇(t)Φ−1(t).

Let us explore these two possibilities.

3.3 Nakajima-Zwanzig master equation

Our master equation for Pρ(t) is already of the form

d

dt
Pρ(t) =

∫

0

t

dt1KNZ(t, t1)Pρ(t1)

where the memory kernel is given by

KNZ(t, t1) = PL(t)GQ(t, t1)L(t1)P

and admits an expansion relying on the one of GQ(t, t1)

GQ(t, t1) = TO exp

( ∫

t1

t

dt2QL(t2)

)

= 1+

∫

t1

t

dt2QL(t2) +

∫

t1

t

dt2

∫

t1

t2

dt3QL(t2)QL(t3)+	
so that we can write KNZ =KNZ

(2)
+KNZ

(4)
+	 with

KNZ
(2)

(t, t1) = PL(t)L(t1)P

KNZ
(4)

(t, t1) =

∫

t1

t

dt2

∫

t1

t2

dt3[PL(t)L(t2)L(t3)L(t1)P −PL(t)L(t2)PL(t3)L(t1)P ]

The Nakajima-Zwanzig master equation to second order for ρS(t), obtained by taking the partial
trace reads

d

dt
ρS(t) = −

∫

0

t

dt1TrE{P[V (t), [V (t1),Pρ(t1)]]}

and for Pρ→
∑

i
TrE{Aiρ}⊗Bi

d

dt
ρS(t) = −

∫

0

t

dt1
∑

j

TrE{Bj}TrE

{

Aj

[

V (t),
[

V (t1),
∑

i

TrE{Aiρ(t1)}⊗Bi

]

]}

.

Standard projection
A→1E, B→ ρE

d

dt
ρS(t) = −

∫

0

t

dt1TrE{[V (t), [V (t1), ρS(t1)⊗ ρE]]}

Correlated projection
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Ai→Πi, Bi→ ρE
i

d

dt
wj(t) = −

∫

0

t

dt1TrE

{

Πj

[

V (t),

[

V (t1),
∑

i

wi(t1)⊗ ρE
i

]

]}

.

where wi(t)=TrE{Πiρ} so that ρS(t)=
∑

i
wi(t).

3.4 Time-convolutionless master equation

To obtain a master equation for Pρ(t) local in time as suggested we have to consider a backward
in time propagator for the full dynamics, so that

ρ(t1) = G(t, t1)ρ(t)

for t1< t, given by

G(t, t1) = T
�

exp

(

−

∫

t1

t

dt2L(t2)

)

with antichronological time ordering. Inserting in the equation for Pρ(t) we have

d

dt
Pρ(t) = PL(t)

∫

0

t

dt1GQ(t, t1)L(t1)PG(t, t1)�
Σ(t)

(P +Q)ρ(t)

With this definition of Σ(t) the previously obtained expression of Qρ(t) becomes

Qρ(t) = Σ(t)(P +Q)ρ(t)

and provided the inverse of 1−Σ(t) exists (always true for short times since Σ(0) = 0 and weak
coupling since Σ(t)|α=0

= 0) one has

d

dt
Pρ(t) =

{

PL(t)
1

1−Σ(t)
P

}

Pρ(t)

= KTCL(t)Pρ(t)

but according to

1

1−Σ(t)
=
∑

n=0

∞
Σn(t)

and

Σ(t) =

∫

0

t

dt1GQ(t, t1)L(t1)PG(t, t1)

one obtains a perturbation expansion KTCL=KTCL
(2)

+KTCL
(4)

+	with

KTCL
(2)

(t) =

∫

0

t

dt1PL(t)L(t1)P

KTCL
(4)

(t) =

∫

0

t

d t1

∫

0

t1

d t2

∫

0

t2

d t3[PL(t)L(t1)L(t2)L(t3)P −PL(t)L(t1)PL(t2)L(t3)P

−PL(t)L(t2)PL(t1)L(t3)P −PL(t)L(t3)PL(t1)L(t2)P ].

An important fact is that for the TCL expansion one has an explicit though cumbersome recipe
to directly express the n-th contribution

KTCL
(n)

=

∫

0

t

dt1

∫

0

t1

dt2...

∫

0

tn−2

dtn−1〈L(t)...L(tn−1)〉oc

in terms of socalled ordered cumulants.
The time-convolutionless master equation to second order for ρS(t), obtained by taking the

partial trace, reads

d

dt
ρS(t) = −

∫

0

t

dt1TrE{P [V (t), [V (t1),Pρ(t)]]}
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and for Pρ→
∑

i
TrE{Aiρ}⊗Bi

d

dt
ρS(t) = −

∫

0

t

dt1
∑

j

TrE{Bj}TrE

{

Aj

[

V (t),
[

V (t1),
∑

i

TrE{Aiρ(t)}⊗Bi

]

]}

.

Standard projection
A→1E, B→ ρE

d

dt
ρS(t) = −

∫

0

t

dt1TrE{[V (t), [V (t1), ρS(t)⊗ ρE]]}

Correlated projection

Ai→Πi, Bi→ ρE
i

d

dt
wj(t) = −

∫

0

t

dt1TrE

{

Πj

[

V (t),
[

V (t1),
∑

i

wi(t)⊗ ρE
i

]

]}

.

where wi(t)=TrE{Πiρ}, so that ρS(t)=
∑

i
wi(t)

3.5 Explicit treatment of damped Jaynes-Cummings model

We consider the exact explicit expression of time-convolutionless (TCL) and Nakajima-Zwanzig
(NZ) master equation for a specific instructive model, the damped Jaynes-Cummings. We have
HS =ω0σ+σ−, HE =ωb†b with interaction

HI = σ+⊗
∑

k

gkbk + h.c.= σ+⊗B+ h.c.

thanks to the rotating wave approximation in the coupling the model can be solved analytically
for Boson bath initially in the vacuum.

Born approximation
Let us first look at the Born, second order approximation in projection operator technique,

assuming a standard projection with ρE = |0〉〈0|. NZ to second order in iteraction picture reads

d

dt
ρ(t) =

∫

0

t

dt12f(t− t1)

[

σ−ρ(t1)σ+−
1

2
{σ+σ−, ρ(t1)}

]

and therefore TCL to second order

d

dt
ρ(t) =

∫

0

t

dt12f(t− t1)

[

σ−ρ(t)σ+−
1

2
{σ+σ−, ρ(t)}

]

.

The function f(t) is the relevant correlation function of the model, given by the vacuum expec-
tation value of product of field operators

f(t− t1) = eiω0(t−t1)〈0|B(t)B†(t1)|0〉

=
∑

k

|gk|
2
ei(ω0−ωk)(t−t1)

=

∫

dωJ(ω)ei(ω0−ω)(t−t1)

with J(ω) =
∑

k |gk|
2
δ(ω − ωk) the spectral density given by sum of (coupling strength)2× (den-

sity of modes). The typical expression is Lorentzian

J(ω) =
1

2π

γ0λ
2

(ω0−ω−∆)+λ2

where ∆ denotes detuning from resonance. Here 1/τE = λ the spectral width, 1/τS = γ0 the
relaxation time, and the coupling strength or expansion parameter is α= τE/τS = γ0/λ. The cor-
responding correlation function is an exponential

f(t− t1) =
1

2
γ0λe−λ|t−t1|ei∆(t−t1).
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In the Markov approximation γ0 ≪ λ, one has f(t − t1) → γ0δ(t − t1) and one obtains the Lind-
blad master equation

d

dt
ρ(t) = γ0

[

σ−ρ(t)σ+−
1

2
{σ+σ−, ρ(t)}

]

.

Exact solution
Due to conservation of the number of excitations N = σ+σ− +

∑

k
bk
†
bk the model can be

exactly solved, since for initial vacuum state the dynamics is restricted to a finite dimensional
subspace. We can solve the Schrödinger equation

d

dt
|Ψ(t)〉=− iHI(t)|Ψ(t)〉

observing that initial states with the structure

|Ψ(0)〉 = c0|0〉⊗ |0〉E + c1(0)|1〉 ⊗ |0〉E +
∑

k

ck(0)|0〉⊗ |k〉E

are preserved in form with time. For ck(0) = 0 so that the initial state is factorized one is lead
upon substitution in the Schrödinger equation to solve the coupled equations

d

dt
c1(t) = − i

∑

k

gke
i(ω0−ωk)tck(t)

d

dt
ck(t) = − i gk

∗e−i(ω0−ωk)tc1(t)

and therefore ċ1(t)=− (f ⋆ c1)(t). Let G(t) be the solution of

Ġ(t) = − (f ⋆G)(t)

with initial condition G(0)= 1, so that c1(t)=G(t)c1(0). Then one has

ρ(t) = TrE{|Ψ(t)〉〈Ψ(t)|}

=

(

|G(t)|2ρ11(0) G(t)ρ10(0)

G⋆(t)ρ01(0) ρ00(0) + (1− |G(t)|2)ρ11(0)

)

which actually is the general solution since any state can be expressed as mixture of pure states,
and G(t) does not depend on the initial condition.

Exact TCL and NZ equations
Given now the exact time evolution mapping

Φ(t): ρ(0)→ ρ(t)= Φ(t)ρ(0)

we can construct the exact TCL and NZ equation, exploiting the above introduced relations

KTCL(t) = Φ̇(t)Φ−1(t)

and

K̂NZ(u) = u1− Φ̂−1
(u).

This can be done considering a matrix representation of Φ(t). The latter can be obtained con-

sidering its action on a basis of operators in C2, given by {Xi} =
{

1

2
√ 1,

1

2
√ σi

}

i=1,2,3
,

orthonormal according to TrS{XiXj}= δij. We then have

Φ[ρ] =
∑

kl

FklTrS
{

Xl
†
ρ
}

Xk

with Fkl =TrS
{

Xk
†Φ[Xl]

}

. In terms of the matrix F =(Fkl) our relations become

KTCL(t) = Ḟ (t)F−1(t)

and

K̂NZ(u) = u1− F̂
−1

(u).
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Given the expression of these matrices providing the action of Φ on ρ though its coefficients in a
given operator basis, we can obtain a corresponding expression of Φ as superoperator acting on
ρ as an operator. For the case at hand the TCL result is

KTCL(t) =















0 0 0 0

0 −
γ

2
−
ε

2
0

0 +
ε

2
+
γ

2
0

γ 0 0 − γ















with

ε(t) + iγ(t) = − 2

[

Ġ(t)

G(t)

]

so that

ε(t) = − 2Im

[

Ġ(t)

G(t)

]

γ(t) = − 2Re

[

Ġ(t)

G(t)

]

which in operator form reads

KTCL(t)ρ = −
i

2
ε(t)[σ+σ−, ρ] + γ(t)

[

σ−ρσ+−
1

2
{σ+σ−, ρ}

]

.

Similarly though with more calculations for the NZ case

K̂NZ(u) =













0 0 0 0

0 −Re f (u) − Im f (u) 0

0 Im f (u) −Re f (u) 0

k̂1(u) 0 0 k̂1(u)













where the function

k̂1(u) =
1− u|G|

2
(u)

|G|2(u)

is the solution of the convolution equation

d

dt
|G(t)|

2
= −

(

k1 ∗ |G|
2
)

(t)

so that in operator form one has

d

dt
ρ(t) = (KNZ ⋆ ρ)(t)

with

KNZ(τ )ρ = − i Im f(τ )[σ+σ−, ρ]

+ k1(τ )

[

σ−ρσ+−
1

2
{σ+σ−, ρ}

]

+
1

4
k2(τ)[σzρσz − ρ]

and

k1(τ )+ k2(τ ) = 2Re f

One already notices the different operator structures in the two master equations.

Exact evolution for Lorentzian spectral density
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Recall that according to

ρ(t) =

(

|G(t)|2ρ11(0) G(t)ρ10(0)

G⋆(t)ρ01(0) ρ00(0) + (1− |G(t)|2)ρ11(0)

)

the overall dynamics is know upon knowledge of G obeying

Ġ(t) = − (f ⋆G)(t)

which for our Lorentzian spectral density reads

G(t) = e−λt/2

[

cosh

(

λt

2
δ

)

+
1

δ
sinh

(

λt

2
δ

)]

,

with δ = 1− 2γ0/λ
√

. In the weak coupling regime γ0/λ < 2 one has δ ∈ R, so that G(t) is

always positive. In the strong coupling regime γ0/λ > 2 one has δ ∈ iR, so that G(t) oscillates
between positive and negative values going through zero.

TCL for Lorentzian spectral density
For a typical spectral density and therefore correlation function we can provide explicit

expressions, which upon expansion in the coupling coefficient α = γ0/λ allow to recover the per-
turbation expansion and compare it with the exact result.

For a Lorentzian spectral density on resonance for the TCL case one has

ε(t) = 0

γ(t) = 2γ0

sinh
(

λt

2
δ
)

δ cosh
(

λt

2
δ
)

+ sinh
(

λt

2
δ
)

with δ = 1− 2γ0/λ
√

, so that correctly in the Markov approximation for λ≫ γ0 one has γ→ γ0.

The master equation reads

d

dt
ρ(t) = γ(t)

[

σ−ρ(t)σ+−
1

2
{σ+σ−, ρ(t)}

]

.

In the weak coupling regime γ0/λ < 2 one has δ ∈ R, so that γ(t) is always positive and grows
monotonically to the Markovian value (for γ0/λ ≪ 1). In the strong coupling regime γ0/λ > 2
one has δ ∈ iR, so that γ(t) oscillates between positive and negative values, actually diverging at
given points when strictly on resonance, reaching for long times a Markovian approximation for
finite detuning. Considering an expansion in the coupling coefficient α= γ0/λ one has

γ(2)(t) = γ0

(

1− e−λt
)

= 2Re

∫

0

t

dt1f(t1)

and

γ(4)(t) =
γ0

2

λ
[sinh (λt)−λt]e−λt

= 2Re

∫

0

t

dt1

∫

0

t!

dt2

∫

0

t2

dt3[f(t− t2)f(t1 − t3)− f(t− t3)f(t1− t2)]

where we have also indicated the expression for the corresponding term of the perturbation
expansion of the TCL series. Notice that these functions always stay positive so that the
approximation given by second or fourth order grant CP. The overall dynamics however is not
in Lindblad form for strong coupling, since γ(t) goes through negative values. As already said
for the TCL series we can give the expression of the 2n-th order contribution as

ε(t)+ iγ(t) = − 2

[

Ġ(t)

G(t)

]

= 2

∫

0

t

dt1

∫

0

t1

dt2...

∫

0

t2n−2

dt2n−1(− )
n+1〈f(t− t1)f(t2− t3)...f(t2n−2− t2n−1)〉oc

NZ for Lorentzian spectral density
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For a Lorentzian spectral density on resonance for the NZ case one has

ε(t) = 0

k1(t) = γ0λe
−3λt/2

[

cosh

(

λt

2
δ ′
)

+
1

δ ′
sinh

(

λt

2
δ ′
)]

k2(t) = 2Re f(t)− k1(t)

= γ0λe
−λt

{

1− e−λt/2

[

cosh

(

λt

2
δ ′
)

+
1

δ ′
sinh

(

λt

2
δ ′
)]}

with δ ′= 1− 4γ0/λ
√

. The master equation reads

d

dt
ρ(t) =

∫

0

t

dτ

{

k1(t− τ )

[

σ−ρ(τ )σ+−
1

2
{σ+σ−, ρ(τ )}

]

+
1

4
k2(t− τ )[σzρ(τ )σz − ρ(τ )]

}

Considering an expansion in the coupling coefficient α= γ0/λ one has

k1
(2)

(t) = γ0λe
−λt

and

k2
(2)(t) = 0

and for higher orders k2
(2n)(t) = − k1

(2n)(t), so that the Nakajima-Zwanzig master equation to
second order reads

d

dt
ρ(t) = γ0λ

∫

0

t

dτe−λ(t−τ)

[

σ−ρ(τ )σ+−
1

2
{σ+σ−, ρ(τ )}

]

.

As seen discussing quantum semi-Markov processes, to second order CP is not preserved in the
NZ approach unless in weak coupling approximation corresponding to 1 − 4γ0/λ > 0. At fourth
order one has

k1
(4)(t) = γ0

2
[

e−λt(1−λt)− e−2λt
]

k2
(4)

(t) = − k1
(4)

(t)

and therefore a different operator structure.
Also in the NZ case the expression of the memory kernel at various orders can be obtained

directly from the perturbation series, according to the expressions

k1
(2)

(t) = 2Re f(t)

k1
(4)

(t) = − 2Re

∫

t1

t

dt2

∫

t1

t2

dt3[f(t− t3)f(t1− t2)+ f(t− t1)f(t3− t2)]

although in this case an explicit expression for the 2n-th order contribution is not available.

3.6 References

For this part see mainly [Breuer2007, Vacchini2010b, Smirne2010b, Breuer2010a]

A word of warning:
The bibliography is very incomplete, we only quote papers directly related to the exposition.

A wider and more reasonable panorama of the activity on the subject can be gained looking at
the papers quoted in the given references, where more justice is made to the work of other
authors.
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