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One of the most common and essential tasks of everyday life:
transmission of information

Examples of classical communications channels:
telephones/mobile phones/computers

A quantum communications channel : one which 

incorporates  intrinsically quantum-mechanical effects

Example of a quantum communications channel :
-- an optical fibre

a photon in some 
quantum-mechanical state

input to the channel :



In Quantum Information Theory,  information is carried by
(or embodied in) physical states of quantum-mechanical 
systems:
e.g. polarization states of a photon, spin states of electrons

2C�H  

(finite-dimensional Hilbert spaces)

( ) :B H algebra of linear operators acting on H

State space : Hilbert space         associated with the system, H

Qubit spacee.g.

States: density matrices, ;  0,  Tr  1ρ ρ ρ≥ =

( ) ( ) :⊂D H B H set of all density matrices, 



Any allowed physical process that a quantum system can 
undergo is described by a :
linear completely-positive, 
trace preserving (CPTP) map

Quantum Channels

environment

open 

system

: ( ) ( )A BΦ →D H D H
, :A BH H Hilbert spaces of the input and 

output systems

Φ
ρ ( )ρΦ

input output

: a linear CPTP map

interactions

e.g.  transmission through a quantum 
communications channel

Quantum channel



Trace preserving (TP): 

Φ
ρ ( )ρ ρ′ = Φ

input output

Tr Tr 1ρ ρ′ = =

( ) 0ρ ρ′ = Φ ≥
Positive:

( )( )E AEid ρΦ⊗

Completely positive (CP):

= an allowed state of 

the composite system 

environment

system
A

E

AEρ

( )( ) 0AEid ρΦ⊗ ≥

: ( ) ( )A BΦ →D H D H

( )B E∈ ⊗D H H

:CPTP map



ρ

0 0E Eρ ⊗ U

( )ρΦ

( ) †: 0 0AE E EU Uσ ρ= ⊗

Φ

“Church of the larger Hilbert Space”

system

system + ancilla

TrE AEσ

AH

A E⊗H H

( )( )†( ) Tr 0 0E E EU Uρ ρΦ = ⊗

Stinespring’s Dilation Theorem

(environment)



Kraus Representation Theorem:

†

1
( )

M

i i
i

A Aρ ρ
=

Φ =∑

{ } 1
:M

i i
A

=

a finite set of linear operators acting on the Hilbert 

space            of the system, satisfying

†

1
I

M

i i A
i

A A
=

=∑
Kraus operators

A quantum channel : ( ) ( )A BΦ →D H D H

can be represented as follows:

AH

Identity operator

completeness 
relation



The biggest hurdle in the path of efficient transmission of 
information:

-- Presence of noise in communications channels.
Noise distorts the information sent through the channel.

≠

input output

To combat the effects of noise: use error-correcting codes

output input

noisy channel



To overcome the effects of noise: 

instead of transmitting the original messages,

-- the sender encodes her messages into suitable codewords

-- these codewords are then sent through (multiple uses of)

the  channel

Alice Bob

N
Alice’s
message

encoding decoding

uses of n
input output

nE nD
Bob’s
inference

Nnoisy 
Channel 

codeword 

: ( , ) :n n n=C E DError-correcting code:



The idea behind the encoding:

To introduce redundancy in the message so that upon
decoding, Bob can retrieve the original message with a 
low probability of error:

The amount of redundancy which needs to be added –
depends on the noise in the channel



Memoryless binary symmetric channel (m.b.s.c.)

0

1

0              

1
p

p
1-p

1-p

it transmits single bits

effect of the noise: to flip 
the bit with probability  p

Encoding: 0 000
1 111 codewords

the 3 bits are sent through 3 successive uses of the m.b.s.c.

Suppose 000 010

Decoding : (majority voting)     010 0

(Bob receives)
m.b.s.c. 

Example

codeword

(Bob infers)

Repetition Code



Probability of error for the m.b.s.c. :

without encoding = p

with encoding = Prob (2 or more bits flipped) := q

010
0 0 00

1 1 1 1  

Prove: q < p if p < 1/2 -- in this case encoding helps!

(Encoding – Decoding) : Repetition Code.



Information transmission is said to be reliable if:
-- the probability of error in decoding the output 
vanishes asymptotically in the number of uses of the channel 

the maximum amount of information that can be sent 

per use of the channel

Aim: to achieve reliable information transmission 

whilst optimizing the  rate

The optimal rate of reliable info transmission:   capacity



n =M

Transmission of info through a classical channel

Alice Bob

a set of classical messages

wants to send to Bob
through a noisy classical

channel N

To overcome the effects of noise: 

- Alice encodes: messages                             codewords ;

codewords ( n uses of) the channel

N
input output

( | )p y x
Xx J∈ Yy J∈
x y { }0,1 n

X YJ J= =
Let :



( )nN
m∈M

N

( )ny

Alice’s
message

encoding decoding

uses of n
input

( )nx
output

m′∈M

nE nD

encoding: 

output: 

decoding: 

Bob’s
inference

{ }1 2
( ) ( , ,..., );  0,1n i
n nx x x x x= ∈codeword:

{ }: 0,1n
n6E M

{ }1 2
( ) ( , ,..., );   y 0,1n i
n ny y y y= ∈

{ }: 0,1n
n 6D M

: ( , ) :n n n=C E DError-correcting code:
( ) ( )( | )n np y x

( ) :nN



( )nN
nm∈M

N

( )ny

Alice’s
message

encoding decoding

uses of n
input

( )nx
output

nm′∈M

If

nE nD

Information transmission is reliable: 

Prob. of error 0→
Rate of info

transmission

n →∞

Bob’s
inference

Aim: achieve reliable transmission whilst optimizing the rate

m m′ ≠ then an error occurs!

as

Capacity: optimal rate of reliable information transmission

size of message (in bits)

size of codeword (in bits)

number of bits of 
message transmitted 
per use of the channel

= =



Memoryless (classical or quantum) channels

action of each use of the channel is identical and it is 

independent for different uses

-- i.e., the noise affecting states transmitted through the 

channel on successive uses is assumed to be uncorrelated.

Shannon in his Noisy Channel Coding Theorem:

-- obtained an explicit expression for the capacity of a

memoryless classical channel
( ) ( )

1

( | ) ( | )
n

n n
i i

i

p y x p y x
=

=∏



Classical memoryless channel: a schematic representation

{ }( | )p y xchannel: a set of conditional probs.

N
Y

input output
( | )p y x

( )X p x∼

,Xx J∈ ,Yy J∈
x y

{ }( )
( ) max ( : )

p x
C I X Y=NCapacity 

mutual informationinput distributions

( : ) ( ) ( ) ( , )I X Y H X H Y H X Y= + −

( ) ( ) log ( )
x

H X p x p x= −∑Shannon Entropy



( )ρ ρΦ ≠

Φ
ρ ( )ρΦ

input output

A classical channel has a unique capacity

a quantum channel has various different capacities

-- This is due to the greater flexibility in the use of a 

quantum channel

BUT



The different capacities depend on:
the nature of the transmitted information

(classical or quantum)
the nature of the input states

(entangled or product states)

the nature of the measurements done on the outputs
(collective or individual)

the presence or absence of any additional resource
(e.g. prior shared entanglement between Alice & Bob)

whether Alice & Bob are allowed to communicate 
classically with each other



Transmission of Classical Info through a quantum channel

i ( )n
ii ρ→{ }n i=M

( )n
iρ ( )nΦ { }( )n

iE
( )n
iσ

Classical 
messages

encoding POVMuses of n Φ

Alice Bob

( )( ) ( ) ( ):n n n
i iσ ρ=Φ

channel output

input

Probability(Bob infers     correctly)= 

Average probability

of error:

( )( ) ( )Tr n n
i iE σi

( )( ) ( )( ) 1 1 Tr
n

n n
i i

n

n
av

i M
p E

M
σ

∈

⎡ ⎤−⎣ ⎦= ∑



If                     as

In this case, any                                     is said to be an
achievable rate

Classical capacity of 
= the maximum amount of classical info (in bits)

that can be reliably transmitted per use of 

n →∞( ) 0n
avp → : information transmission is

reliable

number of bits of classical message
number of uses of 

lim inf
log n

n

M
n

R
→∞

≤

( ) supC RΦ =

Φ

--the supremum taken over 
all achievable rates

( ) :C Φ Φ

nM = number of 
messages in nM



If Alice restricts her codewords to product states, i.e., if

And Bob does a collective measurement (POVM) on 

Capacity

21
......

( )
ni i i

n
ii ρ ρ ρ ρ⊗ ⊗ ⊗→ =

: product state capacity (1) ( )C Φ

( )( ) ( ) ( ):n n n
i iσ ρ=Φ : the output of      uses of the channeln



Memoryless (classical and quantum ) channels

action of each use of the channel is identical and it is 

independent for different uses

-- i.e., the noise affecting states transmitted through the 

channel on successive uses is assumed to be uncorrelated.

Let             :    successive uses of a quantum  channel 

For a memoryless channel:

Φ

( )n n⊗Φ = Φ

( )nΦ n Φ



Multiple uses of a memoryless channel  

†

1
( )

M

i i
i

A Aρ ρ
=

Φ =∑

( ) ( )( ) ( ) ( ) ,n n n nρ ρ⊗≡Φ Φ

( ) ( ) ( )1 1

1

† †

,...,

( ) ( ) ( ).... ....
n n

n

M

k k k k
k k

n n nA A A Aρ ρ⊗ = ⊗ ⊗ ⊗ ⊗Φ ∑

Consider a memoryless channel defined by 

( )ρ∀ ∈D H

Then the output of        uses of the channel is given by

( ) ( )n nρ ⊗∀ ∈D H

where

n



For product state inputs:

Product State Capacity

21
......

( )
ni i i

n
ii ρ ρ ρ ρ⊗ ⊗ ⊗→ =

given by the(1) ( )C Φ

( ) 21
......

( ) ( ) ) ) ): ( ( (
ni i i

n n n
i iσ ρ ρ ρ ρ⊗ ⊗ ⊗

⊗=Φ =Φ Φ Φ

Transmission of classical info through a memoryless quantum 

channel ( )n n⊗Φ = Φ

Outputs = product states

Holevo-Schumacher-Westmoreland (HSW) Theorem



HSW Theorem
Holevo
Capacity( )

,

(1)
,{ }

( ) max { ( )}
i i

i ip
C p

ρ
χ ρΦ = Φ *( )χ= Φ

where

( ),{ ( )} ( ) ( )( ) ( )i i i i i i
i i

p S p p Sχ ρ ρ ρΦ = Φ Φ−∑ ∑

tr log( )S σ σσ −= : von Neumann entropy

Holevo quantity:   Letχ − : ( )i iσ ρ= Φ

( ),{ } ( ) ( )i i i i i i
i i

p S p p Sχ σ σ σ= −∑ ∑



Holevo quantity of an ensemble of statesχ −

( ),{ } : ( ) ( )i i i i i i
i i

p S p p Sχ σ σ σ= −∑ ∑

{ },i ip σ

The maximum amount of classical info that

Alice can send to Bob using             is{ },i ip σ

( ),{ }i ipχ σ≤

( ),{ } ( )i ip Sχ σ σ→ : i i
i

pσ σ=∑
if the

where

are pureiσ

Holevo
Bound

( ) 0iS σ =∵



HSW Theorem

( )
,

(1)
,{ }

( ) max { ( )}
i i

i ip
C p

ρ
χ ρΦ = Φ *( )χ= Φ

Holevo
Capacity

tells us that the Holevo bound can be achieved --

IF Alice uses product state inputs

& Bob does a collective measurement

*( )χ Φ

( ) 0n
avp → ( ) 0n

avp →

as n →∞ (rate)Ras n →∞

Optimal signal ensemble



*( )nχ ⊗Φ
Holevo Capacity of the block 

of  n channels 

Classical capacity of  a memoryless channel :

regularised Holevo
capacity( )*1( ) lim n

n
C

n
χ ⊗

→∞
Φ = Φ

(without the restriction of inputs being 
product states)         :

n⊗Φ

Φ

This generalization is obtained by considering inputs which

are product states over blocks of n channels but which may 

be entangled within each block



( )*1( ) lim n
n

C
n
χ ⊗

→∞
Φ = Φ

(Q) Can the classical capacity of a memoryless quantum 
channel be increased by using entangled states as inputs ?

Classical capacity of  a 

memoryless channel

This is related to the additivity conjecture of the 

Holevo capacity:

1 2 1 2
* * *) (( ) ( )χ χ χΦ ⊗Φ Φ + Φ= ** )( ) (n nχχ ⊗Φ⇒ Φ=

( )*im( ) 1l n
n n

C χ ⊗

→∞
=⇒ Φ Φ ( )*1lim  

n
n

n
χ

→∞
= Φ ( )*χ= Φ



IF the Holevo capacity is additive for a memoryless

quantum  channel then using entangled inputs would

not increase its classical capacity

An interesting question:

Could entangled inputs increase the classical capacity of

quantum  channels with memory ?



For real-world communications channels, the assumption :
noise is uncorrelated between successive uses of a channel

cannot be justified!

quantum channels with memory

Hence, memory effects need to be taken into account

There are various examples of quantum channels with 

memory : 

e.g. (1) one-atom maser or micromaser

(2) spin-chain



(1) One-atom maser or micromaser

The atoms interact with the photons in the cavity

A stream of two-level atoms injected into an optical cavity.

If these photons have sufficiently long lifetimes,  then the 

atoms entering the cavity feel the effect of the preceding atoms

This introduces correlations between consecutive signal states 

States of these input two-level atoms: signal states



(2) State transfer across a spin chain

The spin chain is allowed to evolve for a specific amount of 
time under the action of the Hamiltonian; causing state to 
propagate

a spin chain : governed by a suitable Hamiltonian

Spins at one end of the chain are prepared (by Alice) in the 
state which is required to be transmitted

The state is then retrieved from a set of spins at the other end

of the spin chain – thus state transfer is achieved !



(2) State transfer across a spin chain

e.g. by applying an external 
magnetic field

When considered as a model for quantum communication:

assume : a reset of the spin chain occurs after the 
transmission of each signal

memoryless quantum channel

A continuous operation without reset might lead 
to higher transmission rates 

quantum channel with memory

Alice



Exercises

(1) Use the HSW theorem to prove that any quantum channel 
can be used to transmit classical information, as long as it 
is not a constant.

(2) Use the HSW theorem to evaluate the product state 
capacity of a qubit depolarizing channel.

(
3

) (1 )dep x x y y z z
ppρ σ ρσ σ ρσ σ ρσρ ⎡ ⎤Φ + +⎣ ⎦= − +



LECTURE II

Memory Effects in Quantum Channels 

Forgetful Channels



( )
,

(1)
,{ }

( ) { ( )}max   
i i

i ip
C p

ρ
χ ρΦ = Φ *( )χ= Φ

Holevo
Capacity

IF Alice sends classical info through a quantum channel 

using product state inputs

& Bob does a collective measurement

Then capacity : Product-state capacity

Holevo quantityχ −

Φ
Lecture I - revisited

HSW Theorem



( )
,

(1)
,{ }

max( ) { ( )}
i i

i ip
C p

ρ
χ ρΦ = Φ *( )χ= Φ

Holevo
Capacity

*( )χ Φ

( ) 0n
avp → ( ) 0n

avp →

as n →∞ (rate)Ras n →∞

Optimal signal ensemble

( )*1( ) lim n
n

C
n
χ ⊗

→∞
Φ = ΦClassical capacity of  a 

memoryless channel

Regularised Holevo capacity



Quantum channels with memory = quantum memory channels

Strategy : (i) start with a simple example of a  
memoryless quantum channel  

(ii) using it, construct a quantum memory channel

Qubit depolarizing channel : ( ) ( );depΦ →B H B H

(
3

) (1 )dep x x y y z z
ppρ σ ρσ σ ρσ σ ρσρ ⎡ ⎤Φ + +⎣ ⎦= − +

2C�H

4

1
i ii

i
pσ ρσ

=

=∑
( )ρ∀ ∈D H

1 2 3 4

1 0 0 1 0 1 0
 ; ; ; 

0 1 1 0 0 0 1
i

i
σ σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 2 3 4 3
(1 ) ;     pp p p p p= − = = =

xσ yσ zσ



( )n n
dep dep

⊗Φ Φ=

4

1
( )dep i i i

i
pρ σ ρσ

=

Φ =∑

( ) ( )n nρ ⊗∈D H

Consider n successive uses of

since the channel is memoryless

input : 

( )( )( )2 21 1 1 2

4

1

( ) ( )
... ...( ....)

n n n

n
dep i i

i

n n
i i i i i i ip p p σ σρ σ σ ρ σ σ⊗

=

⊗ ⊗ ⊗ ⊗ ⊗ ⊗Φ =∑

Let 1 2 ..... ni i ip

1 2 ..... ni i ip
21
....

ni iip p p=

= joint prob. of the n successive qubits being 
acted on by 

21
, ,....,

ni i iσ σ σ resply.

this is in keeping with the notion that the noise acts

independently on each successive use

;   the output is given by



we consider an interesting generalization of this 
model

which yields a model of a quantum memory channel 

This generalization involves a :

discrete-time Markov Chain

Next:



MARKOV CHAINS

simplest mathematical models for random phenomena
evolving in time

It is a random process with the characteristic property 
that  it retains no memory of where it has been in the 
past

so only the current state of the process can influence 
where it goes next.

Discrete-time Markov Chain:

time is discrete

the instants of time are labelled by { }Z 0,1,2,...n +∈ =



An Example

Consider a fly hopping on the vertices of a triangle

1

23

{ }1,2,3I = = state space of the MC

Suppose the fly hops

clockwise with prob. 

anticlockwise with prob. 

So where it hops next depends only on where it is now
2

3
=Prob( hops to 2 in next step |it is at 1)

13q =

1

3

Prob ( hops to 3 in next step |it is at 1) etc.

1

3

2

3

2

3

12q =

1

3
=



,  , 1, 2,3ijq i j = Q
next  j | curre sta ntte is  state i )s i(ijq P=

are the elements of a matrix

: Transition matrix

It is a stochastic matrix 1ij
j

q =∑
Q

n-step transition probability

; transition probability

( ) state after stepsn  j | curren is  statet iis )(n
ijq P= ( )n

ij
Q=

ij ijq Q=

A distribution on the state space is given by

{ }  ;i i Iλ λ ∈= 0,  1i i
i I

λ λ
∈

≥ =∑ (probabilities)

I



;Qλ λ={ }  ;i i Iλ λ ∈= ;j i ij
j

qλ λ=∑
many of the long-term properties of a MC depend on its 
invariant distribution

A Markov Chain is defined by a sequence of random variables

( )0 1 0, ,... ;  n n nX X X X
≥

distribution

; each takes values in 

1 1 0 0 1 1 1( | , ,... ) ( | )n n n n n n n nP X i X i X i X i P X i X i+ + + += = = = = = =

Invariant

Markov Property

1( | )n n ijP X j X i q+ = = =

iX I

= transition probability



Some properties of a Markov Chain

Irreducibility:

-- a Markov Chain is said to be irreducible
if it is possible to go from any state to 
any other state in the chain

Aperiodicity :

-- a Markov Chain is said to be aperiodic if 
the return time to any state in the chain is 
not periodic (or if it has a period = 1) 
i.e., return can occur at irregular times

•
•

•
••

•

•i

j

•
•

•
••

•

•
i



{ }1, 2,3, 4I =

( )( )( )21 1 21 2

4

1

( ) ( )
... ........( )

n n

n
dep

ni

n n
i i i i i ii i ip σ σρ σ σ ρ σ σ⊗

=

⊗ ⊗ ⊗ ⊗ ⊗ ⊗Φ =∑

11 2 1 2 1..... ....
n nnii i i i i i ip q qγ

−
=

21 2 1..... ....
nn i ii i i ip p p p=

n uses of a memoryless depolarising channel :

Now consider the case in which:

,  , 1, 2,3,4 :ijq i j = Qthe elements of the transition matrix

of a discrete-time Markov Chain with state space

Note : the states 1,2,3,4, label the matrices 

of the depolarizing channel 1 2 3 4, , ,σ σ σ σ



( )( )( )1 1 2 1 1 1
1

( ) ( ) ( )
.. ..

,..,
( ..)

n n nn
n

n
dep

n n
i i i i i i i i i

i i
q q σ σρ γ σ ρ σ

−
⊗ ⊗ ⊗ ⊗Φ = ∑

Note : the noise acting on successive qubits is correlated

thkthe noise acting on the        qubit depends on the noise 

acting on the              qubit( 1)thk −

1 1
qubit acted on by qubit acted on b y1)( (| ) 

k k kk

th th
i ii i k kq P σ σ

− −
−=

In this case : the output after n uses

1
the qubit acted on b  y( 1 )

k

st
ii Pγ σ=

model of a quantum memory channel – with Markovian

correlated noise



Macchiavello & Palma : -- introduced this model
-- studied the transmission of classical information through 

2 successive uses of this quantum memory channel with

=(1- ) +  ; 0 1ij j ijq μ γ μδ μ≤ ≤ , 1, 2,3, 4 :i j =

: the degree of memory of the channel

: uncorrelated noise

: fully correlated noise (successive actions identical)

with prob.       the 2 qubits are acted on identicallyμ
with prob.              the action of the channel on the 2 

qubits is uncorrelated
( )1 μ−

0μ =

μ

1μ =



Macchiavello & Palma : -- showed that 
above a certain threshold value of the parameter μ

entangled inputs increase the Holevo quantity

for 2 successive uses of the channel

This suggests that above this value of 

One might be able to transmit a higher amount of classical

information through this channel by using entangled input states

They did not, however, compute the capacity of the channel

χ −

:μ



Next:

we consider a more general quantum memory channel 

with Markovian correlated noise

(of which the above model is a special case)

and study its capacities

---- a finite set of memoryless quantum channels:

{ }1 2, ,..., Mφ φ φ

1, 2,.., ,    : ( ) ( );ii M φ∀ = →B H B H

The model is constructed from

2C�H

qubit channels



Quantum Channel with Markovian Correlated Noise

( )( )1 1 2 1 1
1

( ) ( ) ( )
...

,.., 1
( ....)

n nn
n

M
n n n

i i i i i i i
i i

q qρ γ φ φ ρ
−

⊗ ⊗
=

Φ = ∑
elements of the transition matrix of a discrete-time
Markov chain with finite state space

= invariant distribution

For each                      CPT map on                        

On each use of the channel, one of the given set of CPTP 
maps                                  acts on the qubit

ijq

{ }iγ

{ }1, 2,..., M=I

i∈ I, iφ

uses of the channel

{ }1 2, ,..., Mφ φ φ

n

( ) :B H



Depending on the nature of the Markov Chain the channel 

Either : (1) forgetful     or   (2) not-forgetful

(1) Forgetful channel : a channel in which the correlation in 

the noise dies out with time

(2) not-forgetful channel : a channel with long-term memory

(Q) When is the quantum memory channel with Markovian

correlated noise forgetful?



(A) If the underlying Markov chain is

(1) irreducible (2) aperiodic

•
•

•
••

•

•i

j
•
•

•
••

•

•
i

AND

In this case the Markov Chain has a unique invariant 
distribution and it satisfies the property called 

“convergence to equilibrium”

,i j∈ I,
( )n
ij jn

q γ
→∞
→

{ }
j Ijγ ∈

invariant distribution
of the Markov chain

n-step transition probability

no dependence on

i



Quantum Channel with Markovian Correlated Noise

( )( )1 1 2 1 1
1

( ) ( ) ( )
...

,.., 1
( ....)

n nn
n

M
n n n

i i i i i i i
i i

q qρ γ φ φ ρ
−

⊗ ⊗
=

Φ = ∑

For       large enough, the prob. that the          qubit sent
through the channel is acted upon by the memoryless channel
does not depend on which memoryless channel 
acted on the first  qubit.

thnn
j

φ
i
φ

,i j∈I, ( )n
ij jn

q γ
→∞
→

“convergence to equilibrium”satisfies

If

⇒



In this case (of a forgetful channel) :

The classical capacity of the channel is given by a formula 
which is very similar to that of a memoryless channel

( )*1( ) lim n
n

C
n
χ ⊗

→∞
Φ = Φ regularised Holevo

capacity

For a memoryless channel

For our forgetful channel 

( )( )
,

( )
,

{ }

1lim  max  { ( )}
n

i i

n n
i in p

p
n ρ

χ ρ⊗

→∞
= Φ

( )( )
,

( )( )
,

{ }

1( ) lim  max  { ( )}
n

i i

n
i

n
in p

C p
n ρ

χ ρ
→∞

Φ = Φ



The reason behind getting such a similar result:

can be explained by a simple double-blocking argument

We shall consider this argument in a more general setting.

Why ?

(I) Forgetful channels form an important subclass of ALL 
quantum  channels with memory – (not only those with 
Markovian correlated noise)

(II) For forgetful channels, expressions for each of the 
different capacities are similar to the corrs. capacity 
formulas for memoryless channels ---

-- and can be understood by a double-blocking argument



General model for quantum channels with memory

Bowen & Mancini : introduced a more general model 
for quantum memory channels in which the memory
could even be quantum.

Kretschmann & Werner : studied this model 
exhaustively in the Heisenberg picture

-- they were the first to evaluate capacities of forgetful 
channels.

Thus far : we have studied only a small class of quantum 
memory channels – those in which the memory is 

(i) classical and (ii) governed by an underlying Markov Chain



In this model : a forgetful channel is one in which :

The effect of the initializing memory dies away with time

It is easy to evaluate the capacities of forgetful channel

by reducing them to a memoryless setting via a 

double-blocking argument

Recall: for the Markovian correlated noise model

,i j∈I, ( )n
ij jn

q γ
→∞
→

“convergence to equilibrium”

condition for forgetfulness

it ensures that the initializing memory dies out asymptotically



Consider a strictly forgetful channel 

one in which : the effect of the initializing memory dies 

away after a finite number of uses (say, m uses)

e.g. transmission of info over a quantum spin chain
which is reset after every third use (m = 3).

For processing of long messages (signal states) we group 

the successive uses of the channel in blocks of length (m+ l)

The double-blocking argument

Φ

m l+
• • • • • • • • • • • •......... ..................

uses uses usesm l+m l+



m l+
• • • • • • • • • • • •......... ..................

uses uses usesm l+m l+

Strictly forgetful channel

m m ml l l



Strictly forgetful channel

m m ml l l

• • • •.........• • • • •.........•• • • •.........•

ignore the outputs of the first     channels of each such block

actual encoding is done for the remaining     blocksl

m

Eventually let l →∞

If we restrict inputs to products states of block length m l+
( ) ( )

......1 2input m l m lρ ρ+ +
⊗ ⊗=

( )
1

m lρ + ( )
2
m lρ + ( )

3
m lρ +⊗ ⊗



Strictly forgetful channel
m m ml l l

• • • •.........• • • • •.........•• • • •.........•

due to the strict forgetfulness of the channel:

-- the (relevant part of the) output state factorizes

The whole set-up corrs. to a memoryless channel acting 

on a larger Hilbert space  

( )
1

m lρ + ( )
2
m lρ + ( )

3
m lρ +⊗ ⊗

( )m l+Φ ≈ memoryless channel

Problem memoryless setting

double-blocking for which we know the 
classical capacity



( )*1( ) lim n
n

C
n
χ ⊗

→∞
Φ = Φ regularised Holevo

capacity

For a memoryless channel

For forgetful channels

( )( )
,

( )
,

{ }

1lim  max  { ( )}
n

i i

n n
i in p

p
n ρ

χ ρ⊗

→∞
= Φ

( )( )
,

( )( )
,

{ }

1( ) lim  max  { ( )}
n

i i

n
i

n
in p

C p
n ρ

χ ρ
→∞

Φ = Φ

Classical Capacity

The same double-blocking argument can be applied to channels 
which are forgetful (and not just strictly forgetful)



Lloyd, Shor & Devetak: LSD Theorem

( )( )

( )1( ) lim max ,
n

n

n

n
cQ I

n ρ
ρ

→∞

⊗Φ = Φ

(id )RRB ρσ = ⊗Φ Ψ

( ), ( ) ( )c RB BI S Sρ σ σΦ = − +

purification 
of ρ

coherent information

coherent information

Φρ
. B

. RR .

A .ρΨ RBσ

( | )S R B σ= −



Regularised

Coherent information

For a memoryless channel

For forgetful channels

Quantum Capacity

( )( )

( )1( ) lim max ,
n

n

n

n
cQ I

n ρ
ρ

→∞

⊗Φ = Φ

( )( )

( ) ( )1( ) lim max ,
n

n

n

n
cQ I

n ρ
ρ

→∞
Φ = Φ



LECTURE III

Coding Theorem for a Class of  Quantum Channels with
Long-Term Memory,

ND and Tony Dorlas, 
J. Phys. A: Math. Theor. 40, 8147-8164 (2007).

A channel with long-term memory

(not-forgetful)



A channel with long-term memory

The correlation in the noise does not die out with time

evaluating their capacities is a more challenging task

Simplest example:

( )( ) ( ) ( )

1
( )n n n n

i i
i

M
ρ γ φ ρ⊗

=
Φ =∑

1
1,2,..0  ,, 1

M

i i
i

i Mγ γ
=

∀> = =∑

convex combinations of a finite number of memoryless
channels{ }1 2, ,..., Mφ φ φ

1, 2,.., ,    : ( ) ( );i A Bi M φ∀ = →D H D H

uses of the channel:n



A channel with long-term memory

( )( ) ( ) ( )

1
( )n n n n

i i
i

M
ρ γ φ ρ⊗

=
Φ =∑

1
1,2,..0  ,, 1

M

i i
i

i Mγ γ
=

∀> = =∑
2, CA B �H H

The channel has

memoryless

branches

M

n
Mφ
⊗Mγ

1γ

2γ
2

nφ⊗
1

nφ⊗



Comparing this channel:

with the Markovian correlated noise model:

The Markov Chain has        statesM
We note that (a) is a special case of (b):

( )( ) ( ) ( )

1
( )n n n n

i i
i

M
ρ γ φ ρ⊗

=
Φ =∑ ……….(a)

( )( )1 1 2 1 1
1

( ) ( ) ( )
...

,.., 1
( ....)

n nn
n

M
n n n

i i i i i i i
i i

q qρ γ φ φ ρ
−

⊗ ⊗
=

Φ = ∑
…………..(b)

{ }1 2, ,..., Mφ φ φ

•
•

•
••

•

•
1

2

M

states of the MC



Comparing this channel:

with the Markovian correlated noise model:

The Markov Chain has        states

aperiodic but not irreducible

M

ij ijq δ=

We note that (a) is a special case of (b):

( )( ) ( ) ( )

1
( )n n n n

i i
i

M
ρ γ φ ρ⊗

=
Φ =∑ ……….(a)

( )( )1 1 2 1 1
1

( ) ( ) ( )
...

,.., 1
( ....)

n nn
n

M
n n n

i i i i i i i
i i

q qρ γ φ φ ρ
−

⊗ ⊗
=

Φ = ∑

•
•

•
••

•

•
i

j

Convergence to equilibrium : so it is not forgetful

…………..(b)



Macchiavello and Palma considered:
=(1- ) +  ; 0 1ij j ijq μ γ μδ μ≤ ≤

(fully correlated noise -- successive actions identical)

1μ =Our choice                    corresponds toij ijq δ=

Let us evaluate: the product state capacity of the channel

( )( ) ( ) ( )

1
( )n n n n

i i
i

M
ρ γ φ ρ⊗

=
Φ =∑ ……….(a)

i.e., the classical capacity under the restriction of 

product-state inputs( )(1)C Φ



Let us start by making a naïve guess:

Recall : for a memoryless channel 

( )
,

(1)
,

{ }
( ) sup { ( )}

j j
j j

p
C p

ρ
φ χ φ ρ= *( )χ φ= ………(A)

:φ [HSW Theorem]

*( )χ Φ

( ) 0n
avp → ( ) 0n

avp →

as n →∞ (rate)Ras n →∞

Any ( )*R χ≤ Φ is achievable.



For a memoryless channel 

So in this case, because the channel has       memoryless
branches, one might naively expect: 

BUT

(B) is NOT TRUE ;   min max

M

( )(1)

1
*min ( )ii M

C χ φ
≤ ≤

Φ =

………………(B)

( )
,

(1)
,

{ }
( ) sup { ( )}

j j
j j

p
C p

ρ
φ χ φ ρ= *( )χ φ= ………(A)

:φ [HSW Theorem]

( )
,

,{ }1
maxmin { ( )}

j j
j jp ii M

p
ρ

φχ ρ
≤ ≤

=



Theorem:

( )
,

(1)
,1{ }

mi( ) max )n { ( }
j j

j ji Mp iC p
ρ

φχ ρ
≤ ≤

Φ =

The product-state capacity of the long-term memory channel

( )( ) ( ) ( )

1
( )n n n n

i i
i

M
ρ γ φ ρ⊗

=
Φ =∑ ……….(a)

is given by

whereas are guess was:

( )
,

(1)
,{1 }

( ) max {i ( )}m n
j j

j jp ii M
C p

ρ
φχ ρ

≤ ≤
Φ =

ND & Dorlas

Why ?



M

n
Mφ
⊗Mγ

1γ

2γ
2

nφ ⊗
1

nφ ⊗

Sketch of the proof

(Q) Is there any way in which Bob can find out which of the    
memoryless branches the qubits have been sent through?   

i.e., Can Bob distinguish between the outputs of the different 
memoryless branches ?      

If so, then at least from his point of view:
problem      memoryless channel

Alice Bob



n
Mφ
⊗Mγ

1γ

2γ
2

nφ ⊗
1

nφ ⊗

Sketch of the proof contd.

Alice Bob

(A) Yes -

Alice adds a preamble to her codewords

Bob does a collective measurement on the qubits he receives

&

provided



n
Mφ
⊗Mγ

1γ

2γ
2

nφ ⊗
1

nφ ⊗

Sketch of the proof contd.

Alice Bob

Else we do not need to distinguish between all of them

& we can introduce a compound prob. for each 

set of identical branches.

Assume: ,  1, 2,...,i i Mφ = are all different

1 2φ φ=e.g. If φ= � 1 2: γγ γ= +�

nφ ⊗�

prob.

γ�



n
Mφ
⊗Mγ

1γ

2γ
2

nφ ⊗
1

nφ ⊗

Sketch of the proof contd.

Alice Bob

,  1, 2,...,i i Mφ = are all different

For each pair

-- there exists states 

, :  1 , ,i j i j Mφ φ ≤ ≤
( ) ,ijω such that

( ) ( )( ) ( ) ,ij ij
i jφ ω φ ω≠



(Q) Can Bob distinguish the outputs of these 2 branches ?

Let        be a state such that 

1γ

2γ
2

nφ⊗
1

nφ⊗

1 2( ) ( )φ ω φ ω≠ω

2M =

To allow Bob to distinguish between the 2 branches, 

Alice adds a preamble to the input state

For simplicity consider

( )n
i iρ ←

codeword message



1 2( ) ( )φ ω φ ω≠ω

( )n
jj ρ6

( )m n
jj ω ρ⊗ ⊗6

Instead of encoding

She encodes

-- where is a state such that 

qubit

state
( )m n+ −

Bob receives the state 

( )( )nm n
j

m
i ωφ ρ⊗⊗ + ⊗ with prob. iγ

( ) ( )( )( ) n
i

m
i

n
jφφ ω ρ⊗⊗= ⊗ ( )( )n n

i
m

ji φ ρσ ⊗⊗= ⊗

1γ

2γ
2

m nφ⊗ +
1

m nφ⊗ +

: ( )i iσ φ ω=

( )
j

m nρω⊗ ⊗
input



Bob gets the state ( )( )n
j

nm
i iφσ ρ⊗⊗ ⊗ with probability iγ

( )m n
jj ω ρ⊗ ⊗→Alice encodes

( )m n
jω ρ⊗ ⊗ ( )

i
m nφ + ( )( ) ( )n

i j
m n mφ ω ρ+ ⊗ ⊗

input output

with prob. iγ

preamble

• • • • • • • •………. ……….uses( )m n+ −

m n

Let us focus on the output of the first m qubits



[ ]11 ( )m mσ φ ω⊗ ⊗= 1γwith probability

[ ]22 ( )m mσ φ ω⊗ ⊗= 2γwith probability

(A) Yes. Consider the operator:

Let               : orthogonal projection onto the 
non-negative eigenspace of                 

1 2
( )

1 2
m m mA σ γ σγ ⊗ ⊗−=

and 

( )mA
( )
1
mΠ

( ) ( ) ( )
2 11m m mΠ = −Π

(Q) Can Bob do a measurement to distinguish between

1 2 ?&m mσ σ⊗ ⊗

state of the 
first      qubits
that Bob 
receives

m



Let Bob does a projective measurement (a la Helstrom) 
described by the operators &              on the
state  that he receives: 

( )
1
mΠ ( )

2
mΠ

m
jσ ⊗

, 1, 2m
j jσ ⊗ = 1γ 2γwith probs.        &         resply.

For        large enough, by using Helstrom’s strategy,

Bob can indeed distinguish between 1 2&  m mσ σ⊗ ⊗

-- with arbitrarily low probability of error.

m

Thus he can determine which memoryless branch the 

qubits have come through!



Bob determines which branch the input has come through   
from Bob’s point of view : problem reduces to 

decoding codewords sent through a memoryless channel

∴

( )( )n
j

n
iφ ρ⊗Measurement 

outcome
remaining 

output
state

⇒i ≡

So now he can do the appropriate decoding operation

on the remaining output state to infer Alice’s message

codeword corrs. to 

Alice’s message i

This idea can be generalized to distinguish between all

branches.M



i

BUT

Alice does not know what       is (no feedback)



Now one can understand why:

( )
,

(1)
,{ }

( ) max { ( )}
j j

j ji ip
C p

ρ
φ χ φ ρ=

iφ

and

For a memoryless channel 

The input ensemble for 
which the max is achieved

optimal signal
ensemble=

BUT Alice does NOT know      apriori.i

IF Alice knew     apriori then she could encode her messages
using the optimal signal ensemble for      & obtain (B)

i
iφ

( )
,

(1)
,1{ }

mi( ) max )n { ( }
j j

j ji Mp iC p
ρ

χ φ ρ
≤ ≤

Φ = …………(A)

( )
,

(1)
,{1 }

( mi) m ( )}n ax {
j j

j jp ii M
C p

ρ
χ ρ

≤ ≤
Φ Φ≠ …………(B)



For        , for any given input ensemble { },j jp ρ

Max. amount of classical info that can be sent through it
(for any given input ensemble              ):

In our channel there are        memoryless branches:

( ),1
{in ( )}m j jii M

pχ φ ρ
≤ ≤

=

iφ

( ),{ ( )}j jip φχ ρ=

& this ⇒

M

{ },j jp ρ

( )
,

,1{ }
minmax { ( )}

j j
j jii Mp

pR
ρ

χ φ ρ
≤ ≤

≤

Max. amount of classical info that
can be sent through    iφ

∴

any rate 

is achievable

& this ⇒ ( ) ( )
,

(1)
,1{ }

minmax { ( )}
j j

j jii Mp
C p

ρ
χ φ ρ

≤ ≤
≥Φ



We have proved

( ) ( )
,

(1)
,1{ }

minmax { ( )}
j j

j jii Mp
C p

ρ
χ φ ρ

≤ ≤
=ΦTheorem:

( ) ( )
,

(1)
,1{ }

minmax { ( )}
j j

j jii Mp
C p

ρ
χ φ ρ

≤ ≤
≥Φ

We also need to prove that : any rate 

( )
,

,1{ }
minmax { ( )}

j j
j jii Mp

R p
ρ

χ φ ρ
≤ ≤

≥ is not achievable

Weak Converse

Direct part (achievability)



Ingredients needed to prove the Weak Converse:

Holevo bound

Subadditivity of the von Neumann entropy

Fano’s inequality



Recall: The quantum channel with Markovian correlated 
noise is forgetful IF the Markov Chain is

(1) irreducible and        (2) aperiodic
The “not-forgetful” channel that we considered was

aperiodic but not irreducuble

Another example of a “not-forgetful” channel is one for 
which the Markov Chain is : irreducible but not aperiodic
(i.e., memory governed by a periodic Markov Chain)

E.g. 2-state Markov Chain :

irreducible, periodic (period=2).

• •1 2

0 1
Q

1 0
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Transition
Matrix



2 states of the Markov Chain corrs. to  2 single qubit
channels which act alternatively on successive inputs1 2,φ φ

In this case,

= average of the Holevo capacities of the 
individual channels

Similarly once can consider a channel where the 
underlying Markov Chain has a period

( ) ( )
,

2 2
(1)

,
1 1{ }

*1 1( ) sup { ( )}
2 2j j

j j
i i

i i i
p

C p
ρ

φ χ φ ρ χ φ
= =

= =∑ ∑

[ ]( )1 2 1 2 1 2
( ) ( ) ( ).... ....

1(
2

)n n nρ φ φ φ φ φ φ ρ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗Φ =
times timesn n

2L >
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Lloyd, Shor & Devetak: LSD Theorem

( )1( ) lim max ,
n

n
cQ I

n ρ
ρ

→∞

⊗Φ = Φ

(id )RRB ρσ = ⊗Φ Ψ

( ), ( ) ( )c RB BI S Sρ σ σΦ = − +

purification 
of ρ

coherent information

coherent information

Φρ
. B

. RR .

A .ρΨ RBσ

( | )S R B σ= −


