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= One of the most common and essential tasks of everyday life:
transmission of information

= Examples of classical communications channels:
telephones/mobile phones/computers

= A quantum communications channel : one which
Incorporates intrinsically quantum-mechanical effects

= Example of a quantum communications channel :
-- an optical fibre

= Input to the channel :
a photon in some

guantum-mechanical state
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= In Quantum Information Theory, information is carried by

(or embodied in) physical states of qguantum-mechanical
systems:

= e.g. polarization states of a photon, spin states of electrons

= State space : Hilbert space H associated with the system,
(finite-dimensional Hilbert spaces)
egg H =C? Qubit space
B (H ): algebra of linear operators acting on H

= States: density matrices, 0 ;0 =0, Trp =1

D(H )cB(H ): setofall density matrices,
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= Any allowed physical process that a quantum system can
undergo is described by a :

linear completely-positive,
trace preserving (CPTP) map

environment

open
system,, .
interactions

- a linear CPTP map

e.g. transmission through a quantum
communications channel

Quantum channel

)
P O (p) |
Input output

®:DH,)—>D Hy)

H A H g - Hilbert spaces of the input and
output systems
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p =D(p)

P >l @ :CPTP map ->

input output

= Trace preserving (TP): 1T p'=Trp=1

s Positive:

p =D(p)=0

= Completely positive (CP): Dne
®:DH,)—>D Hy)

(OPRid.) (0, ) = an allowed state of eD (H, ®H,)

the composite system

environment

(O ®id)(p,e) >0
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“Church of the larger Hilbert Space”

P ®[0: (0| U o, :@(OEDUT

system

H,®

/

+ ancilla
H (environment)
E

Troo,:

/

— |

G

system

HA

4
o

D(p)=Tre (U (p®‘OE><OE DUT)

= Stinespring’s Dilation Theorem
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Kraus Representation Theorem:

A quantum channel @ :D (H,)—> D (H,)

can be represented as follows:

D(p) =) ApA

{ Aj }I\/I .a finite set of linear operators acting on the Hilbert

i=1 "space H . of the system, satisfying

M
Z Aj,&1 — |A completeness
— R

relation

Kraus operators | AN
ldentity operator
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= The biggest hurdle in the path of efficient transmission of
Information:

-- Presence of noise in communications channels.

= Noise distorts the information sent through the channel.

Input output
> noisy channel —>

output # input

= To combat the effects of noise: use error-correcting codes
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To overcome the effects of noise:

Instead of transmitting the original messages,

-- the sender encodes her messages into suitable codewords

-- these codewords are then sent through (multiple uses of)
the channel

Alice Bob

ol iJ)

codeword [ noisy -
| encoding —> >| aecoding ——>
Alice’s iInput Channel output Bob’s
message E, N uses of N D, inference

s Error-correcting code: C,=(E,,D,):
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= The idea behind the encoding:

= To introduce redundancy in the message so that upon
decoding, Bob can retrieve the original message with a
low probability of error:

= The amount of redundancy which needs to be added -
depends on the noise in the channel
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Example

= Memoryless binary symmetric channel (m.b.s.c.)

= It transmits single bits

= effect of the noise: to flip
the bit with probability p

Repetition Code

codewords

= the 3 bits are sent through 3 successive uses of the m.b.s.c.

1 P > 1
1-p
= Encoding: > 000
1 > 111
m S
HPPOSE 000 m.b.s.c.
codeword

> 010

(Bob receives)

= Decoding : (majority voting)

010

>0 (Bob infers)
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= Probability of error for the m.b.s.c. :

= Wwithout encoding = p

= With encoding = Prob (2 or more bits flipped) :=q

= Prove: q<pifp<1/2 -- In this case encoding helps!

= (Encoding - Decoding) : Repetition Code.
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= | Information transmission is said to be reliable if:
-- the probability of error in decoding the output
vanishes asymptotically in the number of uses of the channel

s [AIM: to achieve reliable information transmission

whilst optimizing the

= the maximum amount of information that can be sent

per use of the channel
—

= | The optimal rate of reliable info transmission: <capacity >

\/
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Transmission of info through a classical channel
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M , =a set of classical messages
Let
input X " N output 9 ‘JX = ‘JY :{O’l}
cea, POy

= 10 overcome the effects of noise:

- Alice encodes: messages

codewords

> codewords ;

> ( n uses of) the channel
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(n)
meM x (M) y meM
>l encoding s N > decoding |——>
Alice’s Input output I_30b S
message E, N uses of N D~ inference

codonord: 1 = (1, %) %, €01
! encoding:En;l\/I H{O,l}n
= Output: y(n) :(y11y2""’yn); Y E{O’l}n

= decoding: p i ;{0,1}n — M

N (M-

(N) | y(N)
= Error-correcting code: C :=(E.,D,): p(y ‘X )




FE UNIVERSITY OF
¥ CAMBRIDGE

n
meM x (M) y() meM .
> encoding | > N > decoding |——>
Alice’s Input output !3C::b S
message En N uses of N D ] Inference

= If m#m then an error occurs!
s Information transmission is reliable:

Prob. oferror —0 as N—w

= Rate of info number of bits of  _ size of message (in bits)

~ message transmitted
per use of the channel

transmission size of codeword (in bits)

= Aim: achieve reliable transmission whilst optimizing the rate

= Capacity: optimal rate of reliable information transmission
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= Shannon in his Noisy Channel Coding Theorem:

-- obtained an explicit expression for the capacity of a

memoryless classical channel n

p(y™ [ xX™) =] p(y; %)

=1

Memoryless (classical or quantum) channels

= action of each use of the channel is identical and it is
Independent for different uses

-- 1.e., the noise affecting states transmitted through the
channel on successive uses Is assumed to be uncorrelated.
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= Classical memoryless channel: a schematic representation
X ~ p(x) Y
> N —>
B (7 P B
Xedy, yeld,,

= channel: a set of conditional probs. { p(y \ X)}

« Capacity| C(N)= max I(X:Y)

P} AN

input distributions mutual information

(X :Y)=H(X)+H(Y)-H(X,Y)
Shannon Entropy H(X) = —Z p(x)log p(x)




FE UNIVERSITY OF
¥ CAMBRIDGE

@
P O (p)

D(p) = p

= A classical channel has a unique capacity

BUT
a quantum channel has various different capacities

-- This i1s due to the greater flexibility in the use of a

guantum channel
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= The different capacities depend on:
= the nature of the transmitted information
(classical or guantum)
= the nature of the input states
(entangled or product states)

= the nature of the measurements done on the outputs
(collective or individual)
= the presence or absence of any additional resource
(e.g. prior shared entanglement between Alice & Bob)

= whether Alice & Bob are allowed to communicate
classically with each other
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Transmission of Classical Info through a quantum channel

Alice Bob
: (n) (n)
IR PR (I I NN TS N
| — Pi Input O
Classical encoding N uses of O POVM
messages

V= (p0)

channel output
. _ - (n) ~(n)
= Probability(Bob infers | correctly): Tr(Ei O; )

= Average probability | — [1 Tr(EMo™ ]
of error: N ‘M "gﬂ: ( )
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s If ;C) —>0 35 N —o oo :information transmission is
reliable
log|M, |
= 1 1 n = =
= In this case, any R < “QL'Qf " is said to be an
\ achievable rate

‘I\/I ‘: number of _ _

n number of bits of classical message

messages in M

number of uses of D

= C(D): Classical capacity of
= the maximum amount of classical info (in bits)
that can be reliably transmitted per use of

C(d)=supR --the supremum taken over
all achievable rates
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= And Bob does a collective measurement (POVM) on

O'i(n) = (Pi(n)) : the output of N uses of the channel

= Capacity : product state capacity C(l)(CD)
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Memoryless (classical and quantum ) channels

= action of each use of the channel is identical and it is
Independent for different uses

()
-- 1.e., the noise affecting states transmitted through the
channel on successive uses Is assumed to be uncorrelated.

= Let (I)(”) : N successive uses of a quantum channel P

= For a memoryless channel: oM = @®"
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Multiple uses of a memoryless channel

= Consider a memoryless channel defined by
D(p)=Y ApA Y peD(H)
i=1
= Then the output of |1 uses of the channel is given by
dM (,0(”)) — pe" (p(”)), \/ p(n) eD (H ®n)

= wWhere
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Transmission of classical info through a memoryless quantum

channel CD(n) _ CD®n

= For product state inputs:  j — p{™ = p, P, e
2

= Outputs = product states

= Product State Capacity CY(®)  given by the

= Holevo-Schumacher-Westmoreland (HSW) Theorem
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x HSW Theorem

CO@) = max 7({p,®(1)}) = 2" (®) | capacity

= wWhere

Z({ pi,(D(Pi)}) = S(Z P @ (o, )) _Z piS(CD(/Oi ))

S(o)=-trologoc  : von Neumann entropy

= Holevo X —quantity: Let O, .= CD(,Oi)

Z({pi,gi}) - S(Z o) _Z pS(o)
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= Holevo J —quantity of an ensemble of states { P; ; Gi}

Z({pi,gi}) = S(Z piUi) _Zi: piS(Gi)

« Holevo The maximum amount of classical info that

Bound Alice can send to Bob using { P, O'i} IS

< 7(({ pi,Gi})

1({pc})>5(c) where o= po,

I
if the O, are pure - S(ai) =0
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x HSW Theorem

C (@) = max 7 ({p, ©(0)}) = (@) | Lapacry

= tells us that the Holevo bound can be achieved --

IF Alice uses product state inputs

& Bob does a collective measurement

= Optimal signal ensemble

) =0 (M 4

>

as N — oo }(*((D) asn— oo R (rate)
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= Classical capacity of a memoryless channel OF

(without the restriction of inputs being

product states):

C(@) = lim = 4

nN—o0 N

(o)

7 (%)

regularised Holevo
capacity

Holevo Capacity of the block (D"

of n channels

= This generalization is obtained by considering inputs which

are product states over blocks of n channels but which may

be entangled within each block
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» Classical capacity of a A
C(®) =lim= " (0"}
n

memoryless channel —%

(Q) Can the classical capacity of a memoryless quantum
channel be increased by using entangled states as inputs ?

= This is related to the additivity conjecture of the
Holevo capacity:

Z*(q)l ®(D2) — Z*(q)l) "'7(*((1)2) — Z*(q)@n) — nZ*(CD)

= C(®) = r!ijgo%[(@@”) = AL@O%}/X(@) =1 (@)
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= |F the Holevo capacity is additive for a memoryless
guantum channel then using entangled inputs would

not increase its classical capacity

= An interesting question:

Could entangled inputs increase the classical capacity of

guantum channels with memory ?
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= For real-world communications channels, the assumption :
noise Is uncorrelated between successive uses of a channel
cannot be justified!

Hence, memory effects need to be taken into account

- quantum channels with memory

= There are various examples of quantum channels with
memory :
e.g. (1) one-atom maser or micromaser

(2) spin-chain
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= (1) One-atom maser or micromaser
- 6 D)o
.

= A stream of two-level atoms injected into an optical cavity.

= States of these input two-level atoms: signal states

= The atoms interact with the photons in the cavity

= If these photons have sufficiently long lifetimes, then the

atoms entering the cavity feel the effect of the preceding atoms

= This introduces correlations between consecutive signal states
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s (2) State transfer across a spin chain

= a spin chain : governed by a suitable Hamiltonian

= Spins at one end of the chain are prepared (by Alice) in the
state which is required to be transmitted

= The spin chain is allowed to evolve for a specific amount of
time under the action of the Hamiltonian; causing state to
propagate

= The state is then retrieved from a set of spins at the other end
of the spin chain - thus state transfer is achieved !
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s (2) State transfer across a spin chain

= When considered as a model for quantum communication:

assume : a reset of the spin chain occurs after the

transmission of each signal « e.g. by applying an external
g <P Cb @ Cb Cb magnetic field
Alice mmmmm> 1cmoryless quantum channel

= A continuous operation without reset might lead
to higher transmission rates

- guantum channel with memory
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Exercises

(1) Use the HSW theorem to prove that any quantum channel
can be used to transmit classical information, as long as it
IS ot a constant.

(2) Use the HSW theorem to evaluate the product state
capacity of a qubit depolarizing channel.

D, (0)=[1-p)p +§[0xp0x +0,p0, +0,p0, |
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Memory Effects in Quantum Channels

LECTURE I

Forgetful Channels
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= |IF Alice sends classical info through a quantum channel @
= using product state inputs
= & Bob does a collective measurement

= Then capacity : Product-state capacity HSW Theorem

Z({ p; O(po )})

/ Holevo
=« Holevo X — quantity Capacity
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CO@)=mex 7({R D)} =1 (®) | capaciy

= Optimal signal ensemble

a0 | ply 40 X
as i — o * as N — oo R (rate
7 (@) (rate)
= Classical capacity of a 1 .
partty C(®) = lim = " (@°")
memoryless channel N— N

Regularised Holevo capacity
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Quantum channels with memory = quantum memory channels

= Strategy : (1) start with a simple example of a
memoryless quantum channel

(11) using it, construct a quantum memory channel

Qubit depolarizing channel @, :B(H )>BH ), H = C?

Dy (0) = (1~ p)p+§[axpax+aypay+azpaz} V¥ peDH )
4

=§pw p=(-P); P,=Py=Pp,=—+

BTl G ok

O, O,y
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4
= Consider n successive uses of | Py, (p)= Z Pi0;00;
=1

. . n ®n
= since the channel is memoryless q)((je?) — q)dep

« input: p™MeDH ®M . the output is given by
4

(DSZ?)(IO(”)) — Z p,l piz...-pin (O-Il ®O_i2 ®...®O‘in )(p(n))(()'Il ®O-i2 ®...®O‘in )|
=1

= joint prob. of the n successive qubits being
acted on by 0;10j 1. O resply.
pili2 ..... i, = pi1 pi2 pin

= this is in keeping

with the notion that the noise acts

Independently on each successive use



FE UNIVERSITY OF
¥ CAMBRIDGE

s Next:

= We consider an interesting generalization of this
model

= Which yields a model of a quantum memory channel

= This generalization involves a :

discrete-time Markov Chain
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= simplest mathematical models for random phenomena
evolving in time

= It is a random process with the characteristic property
that It retains no memory of where it has been in the
past

= S0 only the current state of the process can influence
where it goes next.

Discrete-time Markov Chain:
s time Is discrete

= the instants of time are labelledby he Z" = {O,l, 2, }
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An Example

= Consider a fly hopping on the vertices of a triangle

| ={1,2,3} = state space of the MC

2 1
3 3 = Suppose the fly hops .
5 = clockwise with prob. —
3 3 ,
= anticlockwise with prob. —
3
= S0 where It hops next depends only on where it is now
2
0, = Prob( hops to 2 in next step |itisat 1) = g

O3 = Prob ( hops to 3 in nextstep |itisat1l) — i etc.
3
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g; = P(next state is j | current state is i) ; transition probability

gy, 1, ] =1,2,3 are the elements of a matrix Q

Q : Transition matrix O; =Q;

It IS a stochastic matrix Zqij =1
j

n-step transition probability

g = P(state after n steps is j | current state is i) = (Q" )ij

A distribution on the state space | Is given by

1= {ﬂ’l}iel ; A >0, %:ﬂ’. —1 (probabilities)
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s Invariant distribution

A={Afia s | A=2Q; 4 :Zj:ﬂ/'q” ;

= Mmany of the long-term properties of a MC depend on its
Invariant distribution

= A Markov Chain is defined by a sequence of random variables
Xy Xy X0 (Xn)n>0 -each X, takesvaluesin |

P(X_ =i | X, =i, X,=0,.X, =1 )=P(X_, =i |X =i)

Markov Property
P(X,,1=1JIX,=1)=0; = transition probability
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Some properties of a Markov Chain

= Irreducibility:

-- a Markov Chain is said to be irreducible
If it I1s possible to go from any state to
any other state in the chain

= Aperiodicity :

-- a Markov Chain is said to be aperiodic if
the return time to any state in the chain is
not periodic (or if it has a period = 1)

I.e., return can occur at irregular times
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= N uses of a memoryless depolarising channel :

Cl)fer; (,O(n)) :i piliz _____ i (Gil ®0; ®..®0; )(p(n))(dil ® 0}, ®---®‘7in)

= Now consider the case in which: pi1i2 ----- i 7/i1qi1iz ""qin_lin

0y, 1, ] =1,2,3,4: the elements of the transition matrix Q

of a discrete-time Markov Chain with state space | = {1, 2.3, 4},

= Note : the states 1 2,3,4, label the matrices

0,,0,,0,,0, Of the depolarizing channel
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= In this case : the output after n uses

((123) (p(n)) — Z 7/|1q|1| qln in (Gil ®.®o )(p(n))(ail ®.®o; )

)

Qi = = P (k™ qubit acted on by on | (k —1)" qubit acted on by &

I

= P(the 1* qubit acted on by &, )

= the noise acting on the k™ qubit depends on the noise
acting on the (k—1)" qubit

= Note : the noise acting on successive qubits is correlated

model of a quantum memory channel - with Markovian
correlated noise
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Macchiavello & Palma : -- introduced this model
-- studied the transmission of classical information through
2 successive uses of this quantum memory channel with

Qij:(l'ﬂ)7j+ﬂ5ij , 0<u<l ,]=12,34:

= with prob. & the 2 qubits are acted on identically

= with prob. (1—,u) the action of the channel on the 2
qubits is uncorrelated

M the degree of memory of the channel

u=0 : uncorrelated noise @

u =1 :fully correlated noise (successive actions identical)
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Macchiavello & Palma : -- showed that
above a certain threshold value of the parameter U

entangled inputs increase the Holevo Y —quantity

for 2 successive uses of the channel

= This suggests that above this value of £

One might be able to transmit a higher amount of classical
Information through this channel by using entangled input states

= They did not, however, compute the capacity of the channel
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s Next:

= We consider a more general quantum memory channel
with Markovian correlated noise
(of which the above model is a special case)

= and study its capacities

= The model is constructed from
---- a finite set of memoryless quantum channels:

{¢1’ ¢2 )y ¢I\/I } qubit channels

Vi=12,.,M, ¢:BH)->BH ), H =C’
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Quantum Channel with Markovian Correlated Noise

= 1 uses of the channel

oM (p(n)) = i 17/i1qi1i2 NI (¢|1 ®.00 )(p(n)>

hyln=

q__ elements of the transition matrix of a discrete-time
) Markov chain with finite state space 1={1,2,...,M}

{J/i} = Invariant distribution

= Foreach jel, ¢| CPTmapon B (H ):

= On each use of the channel, one of the given set of CPTP
maps {¢1, ¢2 uny ¢|\/| } acts on the qubit
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Depending on the nature of the Markov Chain the channel

Either (1) forgetful or (2) not-forgetful

(1) Forgetful channel : a channel in which the correlation in
the noise dies out with time

(2) not-forgetful channel : a channel with long-term memory

(Q) When is the quantum memory channel with Markovian
correlated noise forgetful?
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(A) If the underlying Markov chain is

(1) irreducible (2) aperiodic
- i

AND

= In this case the Markov Chain has a unique invariant
distribution and it satisfies the property called

“convergence to equilibrium”

i,jeL/,qi(jn) r::ﬂ@

n-step transition probability {7} invariant distribution
] jel "
of the Markov chain
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Quantum Channel with Markovian Correlated Noise

oM (p(”)) _ i 17/i1qi1i2 SIS ( , ©.. 0@ )(p(n))

ilv-w'n:

satisfies “convergence to equilibrium”
jel, qi" >y
n—>oo

= — For N large enough, the prob. that the n" gubit sent
through the channel is acted upon by the memoryless channel ¢
does not depend on which memoryless channel ¢

acted on the first qubit.
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In this case (of a forgetful channel) :

= The classical capacity of the channel is given by a formula
which is very similar to that of a memoryless channel

= For a memoryless channel

C(®) = lim EZ*(@@%)

n—o0 N

.1 WIRG
= lim= max ;(({pi,CI)@ (o ))})
n—>o N {p pM}

regularised Holevo
capacity

= For our forgetful channel

. 1 n n
C(®)=lim— max z({p,®"(p")})
=N {ppo}
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= The reason behind getting such a similar result:
can be explained by a simple double-blocking argument

= We shall consider this argument in a more general setting.

() Forgetful channels form an important subclass of ALL
guantum channels with memory - (not only those with
Markovian correlated noise)

(1) For forgetful channels, expressions for each of the
different capacities are similar to the corrs. capacity
formulas for memoryless channels ---

-- and can be understood by a double-blocking argument
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General model for quantum channels with memory

= Thus far : we have studied only a small class of quantum
memory channels - those in which the memory is

(1) classical and (ii) governed by an underlying Markov Chain

= Bowen & Mancini : introduced a more general model
for guantum memory channels in which the memory
could even be quantum.

= Kretschmann & Werner : studied this model
exhaustively in the Heisenberg picture

-- they were the first to evaluate capacities of forgetful
channels.



FE UNIVERSITY OF
¥ CAMBRIDGE

= In this model : a forgetful channel is one in which :

The effect of the initializing memory dies away with time

s Recall: for the Markovian correlated noise model

condition for forgetfulness . (n)
i,jel, Oy’ —27;

“convergence to equilibrium™ N—00

= It ensures that the initializing memory dies out asymptotically

= It is easy to evaluate the capacities of forgetful channel

by reducing them to a memoryless setting via a

double-blocking argument
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The double-blocking argument
= Consider a strictly forgetful channel @

= one in which : the effect of the initializing memory dies
away after a finite number of uses (say, m uses)

= e.g. transmission of info over a quantum spin chain
which is reset after every third use (m = 3).

= |For processing of long messages (signal states) we group

the successive uses of the channel in blocks of length (m+ 1)

m+1 uses
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m [

<€ > <€

. . . .........
m+1 uses

Strictly forgetful channel

m | m I
<€ > € > : <€ > <€
® ® ! RELLLELEE ® : ® ® @ *-:rrri
m+1 uses | m+1 uses
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m | m | m |
< > < > | < > < > | < > < >
® © o 0 ® ! o © 00 ® o o o o o .
- ' = = I I
I | | : :

(m+l1) (m+l1) |

2 ® £ ® ,O:afm”

= ignore the outputs of the first I channels of each such block

= actual encoding is done for the remaining | blocks
= Eventually let | — o0

= If we restrict inputs to products states of block length m+|

input = o™ & Pl 5
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& CAMBRIDGE Strictly forgetful channel
m I m I m [
< > < > | < > < > | < > < > !
® ® © O::-:::: ® : ® ® © O::::::: ® : ® ® © O::::::: ® :
(m+l) (m+1) ' | |
L ® £ ® ,OQEer)

= due to the strict forgetfulness of the channel:

-- the (relevant part of the) output state factorizes

= The whole set-up corrs. to a memoryless channel acting

on a larger Hilbert space (D(m+|) ~ memoryless channel

= Problem > memoryless setting

double-blocking for which we know the
classical capacit
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The same double-blocking argument can be applied to channels
which are forgetful (and not just strictly forgetful)

Classical Capacity
= For a memoryless channel

- 1 . ®n
C(®)= r'}'_g]oﬁ)( ((D ) regularised Holevo
1 capacity

=lim= max z({p,®*"(p")})
N—=% N {p|p| }

» For forgetful channels

1 n) ¢ A(n
C@)=lim = max z({p. " ("))
=N {po}
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= Lloyd, Shor & Devetak: LSD Theorem

Q(®d) = lim = max (P, %)

coherent information

purification org = (10, ® CD)‘PIO

of _ .
P coherent information

Ic(p1®):_S(GRB)+S(GB) =-5(R[B),
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= For a memoryless channel

.1 ; Regularised
Q(®) = lim=max I, (p( ),CD®”)

n—o ) pm Coherent information

» For forgetful channels

.1 "
Q(®) = lim=max Ic(p( ),CD(”))

n—o N p(”)
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LECTURE I

A channel with long-term memory

(not-forgetful)

Coding Theorem for a Class of Quantum Channels with
Long-Term Memory,
ND and Tony Dorlas,
J. Phys. A: Math. Theor. 40, 8147-8164 (2007).



;;H; UNIVERSITY OF _
¥ CAMBRIDGE A channel with long-term memory

= The correlation in the noise does not die out with time
= evaluating their capacities is a more challenging task
= Simplest example:

convex combinations of a finite number of memoryless

{¢11 ¢2  eeey ¢I\/| } channels

Vi=12,.,M, ¢:DMH,)—>DH,);

M
o™ (p™) =3 78" (o)
A 1=1
yd M
= [] uses of the channel: 7, >0 Vi=12,..,M, Z;/i =1
i—1
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0" (p'") = im@” (™)

2 . M
H,Hg=C 7, >0 Vi=12,.,M, Yy =1
i=1
I
\ 1 ¢l®n
= The channel has
)2 ®n
M memoryless 2
branches
) M ®n
M
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= Comparing this channel:

M
o (p") =Y 7™ (P") ...
=1

=  With the Markovian correlated noise model:

M
oM (p™) = Z Vi Yii, -G i, (¢‘|1 9.8 .n)(/?(n))
hoodg=s1 .(b)
= We note that (a) is a special case of (b): @
« The Markov Chain has M states o °’
o ©®
o .M

{@ ¢2""1¢|\/| } states of the MC
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= Comparing this channel:

M (p(n)) Z% ®n (,O(n)) IIIIIIIII (@)

= Wwith the Markovian correlated noise model:

oM (p(n)) _ i Vi, Gii, 0 i ( , ©.- 00 )(p(n)>

heolo= .(b)
= We note that (a) is a special case of (b): i
= The Markov Chain has M states o o
" O =9 ° .

= aperiodic but not irreducible

o Converg@a{@uilibrium : so it is not forgetful



FE UNIVERSITY OF
¥ CAMBRIDGE

= Macchiavello and Palma considered:
Gy =(1-p)y;+ mo; ; 0< u<l

= Our choice =0, correspondsto u=1

]
(fully correlated noise -- successive actions identical)

Let us evaluate: the product state capacity of the channel

M
M (p(n)) _ 27i¢|®n (,O(n)) lllllllll (@)
=1

= I.e., the classical capacity under the restriction of

product-state inputs
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Let us start by making a naive guess:

= Recall : for a memoryless channel ¢:  [HSW Theorem]

C(g) ={§up}z({pj,¢<p,- B3 =7 ().
P
a =0 | Pay 7> 0
aS N — oo *I
py ((D) as N — oo R (rate)

= Any RS;{*(CD) is achievable.
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For a memoryless channel @ [HSW Theorem]

CYg)=sup_x({p;#(0))}) = (¢) ... ®)

{pj.pj}

= S0 In this case, because the channel has [\ memoryless
branches, one might naively expect: ®

C® (@)= min 7 (@)

1<i<M

= min max z({pj,¢.(ﬂj)}) (B)

1<i<M {p; p; 3" N\ BTN

BUT
= (B) IsNOT TRUE; min «—— max
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s |heorem: ND & Dorlas

The product-state capacity of the long-term memory channel

M
o (p") =7 (p”) ...
1=1

IS given by

CY(d) = max min z({pj%(p,-)})

{p; pj}1<i<M

= Whereas are guess was:
(1) — mi
C® (@) = min max z({p;¢ (p)}) .
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Alice /1 T Bob
1
[ e S
2.
7'M ®n
M

(Q) Is there any way in which Bob can find out which of the
M memoryless branches the qubits have been sent through?

I.e., Can Bob distinguish between the outputs of the different
memoryless branches ?

= If so, then at least from his point of view:

problem = memoryless channel
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CAMBRIDGE Sketch of the proof contd.
Alice /1 ®n S0P
1
(I 3
2.
V' m ®n
M

(A) Yes - provided

= Alice adds a preamble to her codewords &

= Bob does a collective measurement on the qubits he receives
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CAMBRIDGE Sketch of the proof contd.

Alice % /1! T 5 Bob

! 1 .
[ e s
l 2 71®n

Assume: @, 1=12,....,M are all different

=, Else we do not need to distinguish between all of them
s, & we can introduce a compound prob. for each

set of identical branches.

~/

= eg.If @ =0, —¢  prob. 7=y+7,
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7 CAMBRIDGE Sketch of the proof contd.

Alice /1 T Bob
1
O — e e
2.
VM ®n
M

¢i1 I :11 21 ney M are all different

« Foreach pair ¢,¢;: 1<1,J<M,

-- there exists states a)(ij) such that

¢i(w(u‘>)¢¢j (w(ij)),
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= For simplicity consider M=2

7/1 ¢l®n
) @n
2

(Q) Can Bob distinguish the outputs of these 2 branches ?

Let @ be a state such that
- ) (w) # &, (w)

= To allow Bob to distinguish between the 2 branches,
Alice adds a preamble to the input state p(n) ¥ ®

codeword message
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/1 ¢l®m+n
®m (n)
a)_ ®p] 7/2 @Mm+n
Input 2

= Instead of encoding  j p}”)

_ o - (m+n)— qubit
= She encodes o @ p; state

- where @ is astate such that @ (@) # @, (®)

= Bob receives the state
(n)

g™ " (a)®m ® p: ) with prob. 7;

J

:(¢i((0))®m ®¢i®n (pj(n)) :Gi®m ®¢i®n (pfn))
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Al des | (n)
ice encodes | ® P,
preamble
(Mm+n)— uses ® o o ... .0 © 0 O .. ®
<€ > <€ >
m n

@m (n) (m+n) (m+n) ®@m (n)

- Q p; - > () @ QP
o s I oo & ( p;")

Cwith prob. 7|

= Bob gets the state ai®m ®¢,®”(p}”)) with probability

= Let us focus on the output of the first M qubits ®
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state of the ®m ®m - "
o’ = W with probability 7
first M qubits 1 [¢1( )]
® XM ] .y
that _Bob o, m _ [¢2 (a))] with probability 7>
receives

(Q) Can Bob do a measurement to distinguish between
o & o™ ? -

(A) Yes. Consider the operator: A = 7/101®m — 720?“

= Let Him) . orthogonal projection onto the
non-negative eigenspace of A™

and
e =1 1
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= Let Bob does a projective measurement (a la Helstrom)
described by the operators H{m) & Hgm) on the

state o™ that he receives:

J
@m

: ,]=1,2 withprobs. 71 & y, resply.

O

= For [M large enough, by using Helstrom’s strategy,

Bob can indeed distinguish between 01®m & a?m

-- with arbitrarily low probability of error.

= Thus he can determine which memoryless branch the

gubits have come through!




FE UNIVERSITY OF
¥ CAMBRIDGE

= Bob determines which branch the input has come through
= - from Bob’s point of view : problem reduces to

decoding codewords sent through a memoryless channel

= S0 now he can do the appropriate decoding operation

on the remaining output state to infer Alice’s message

Measurement remaining _ 4" (p™)
outcome | output — ™ J
state

\
codeword corrs. to
Alice’s message i

= This idea can be generalized to distinguish between all

M branches.



FE UNIVERSITY OF
¥ CAMBRIDGE

= Alice does not know what | is (no feedback)
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= Now one can understand why:

C® (@) = max min r({pido))}) | (A)
and | CV(®)# min max ({p;®i(0))})  |....... (B)

= For a memoryless channel ¢

C®(4) = max Z({pj%(p,-)})

{pj.0j}
= The input ensemble for __optimal signal
which the max is achieved ensemble

= IF Alice knew | apriori then she could encode her messages
using the optimal signal ensemble for ¢, & obtain (B)

BUT Alice does NOT know | apriori.
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= For ¢ , for any given input ensemble {pj,pj}

Max. amount of classical info that
can be sent through @, l = Z({pjﬁ (o, )})

= In our channel there are M memoryless branches:
. Max. amount of classical info that can be sent through it
(for any given input ensemble {p; p;} ):

= min Z({pj,¢l (,0,-)})

1<i<M

- &this =>. anyrate R< max min z({p,4(p;)})

IS achievable

. ethis = CY(®)= max min x({p;4(r)})
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Theorem: c® (q)) :{rlgzz;)j(}lrgrilgip/I ;(({D,—%. (P, )})

= We have proved Direct part (achievability)

C(l)(q))z max_ min Z({pj,¢l (,Oj)})

{p; p;}1<i<M

= We also need to prove that : any rate

> . _ _ . .
R> {rg}f'ip>j(}ll;fi1£|p/| Z({p,% (,OJ )}) is not achievable

Weak Converse
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= Ingredients needed to prove the Weak Converse:

= Holevo bound
= Subadditivity of the von Neumann entropy

= Fano’s inequality
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= Recall: The quantum channel with Markovian correlated
noise is forgetful IF the Markov Chain is

(1) irreducible and (2) aperiodic
= The “not-forgetful” channel that we considered was
aperiodic but not irreducuble

= Another example of a “not-forgetful” channel is one for
which the Markov Chain is : irreducible but not aperiodic
(i.e., memory governed by a periodic Markov Chain)

= E.g. 2-state Markov Chain : ©
1 2

= Transition 0 1
Matrix 11 0

iIrreducible, periodic (period=2).
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= 2 states of the Markov Chain corrs. to 2 single qubit
channels 71'¥2 which act alternatively on successive inputs

DM (pM) = %[qﬁl 0404 e..+¢,0404..](p")

N times N times

= In this case,

1 1& =
C(l) _ - _ _ _ -
() S zi_lj,z({p,,qb.(p,)}) > Zﬁ” (4)

= average of the Holevo capacities of the
Individual channels

= Similarly once can consider a channel where the
underlying Markov Chain has a period L > 2
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= Lloyd, Shor & Devetak: LSD Theorem
.1
Q(®) =lim=max |, (p,®*")
N—>00 n o,
" coherent information

purification org = (10, ® CD)‘PIO

of _ .
P coherent information

Ic(p1®):_S(GRB)+S(GB) =-5(R[B),




