

2224-4

School on New Trends in Quantum Dynamics and Quantum Entanglement

14 - 18 February 2011

ESSENTIAL ENTANGLEMENT

Andreas BUCHLEITNER

Albert Ludwigs Universitaet Freiburg Physikalisches Institut Freiburg Germany

Essential entanglement

Andreas Buchleitner

Quantum optics and statistics Institute of Physics, Albert Ludwigs University of Freiburg

ICTP Trieste, 14-18 February 2011

Entanglement, a central resource of quantum information processing

Key challenges

- How long does this special fuel "entanglement" last, under realistic conditions?
- Scalability how do size and coherence requirements compete?

[Arndt, Hornberger & Zeilinger, Physics World 2005]

• Which functional rôle?

[The Economist, Quantum Dreams, 10/3/2001]

Entanglement, a new perspective for the quantum to classical transition

?which size?

?which temperature?

decoherence \sim entanglement with uncontrolled degrees of freedom!?

Quantum coherence in photosynthesis

photosynthetic complex

2D spectroscopy

light harvesting antenna complexes (e.g., "FMO") funnel excitations from receptor to reaction center with ≥ 95 % quantum efficiency

at ambient temperature [Engel et al., Nature 446, 782 (2007); Collini et al., Science 323, 369 (2009)]

in noisy, multi-hierarchical environment ??? ORIGIN OF THIS EFFICIENCY ???

Wrap-up I-1

Any pure state $|\Psi\rangle$ which *cannot* be written as a product $|\phi\rangle\otimes|\chi\rangle$, i.e.,

 $|\Psi\rangle \neq |\phi\rangle \otimes |\chi\rangle, \forall |\phi\rangle \in \mathcal{H}_{A}, \forall |\chi\rangle \in \mathcal{H}_{B}, (|\Psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B})$

is nonseparable or entangled.

Wrap-up I-2

Schmidt decomposition:

Any bipartite state $|\Psi
angle\in\mathcal{H}_{A}\otimes\mathcal{H}_{B}$ can be written as

$$|\Psi\rangle = \sum_{j} \sqrt{\lambda_j} |a_j^S\rangle \otimes |b_j^S\rangle \,,$$

with the (*unique*) Schmidt coefficients λ_j , and the Schmidt basis $|a_j^S\rangle \otimes |b_j^S\rangle$.

A bipartite state $|\Psi\rangle$ is separable if and only if it has only one non-vanishing Schmidt coefficient.

Reformulating concurrence

An efficient quantifier for entanglement is derived by rewriting pure state concurrence as

 $c(\Psi) = \sqrt{\langle \Psi | \otimes \langle \Psi | A | \Psi \rangle \otimes | \Psi \rangle} \ ,$

where A acts on *two copies* of the given state $|\Psi\rangle$.

[Mintert et al, 2004-2008]

 $A \sim P_{-}^{(1)} \otimes P_{-}^{(2)}$ projects on the antisymmetric subspaces of the underlying factor spaces. Thus, *c* vanishes for states which are invariant under exchanges of the individual copies. Possible interpretation in terms of suitable measurement(s) on two copies.

Mixed state concurrence in higher dimensions

For mixed states of bi- or multipartite states of *arbitrary finite dimension* we obtain

$$c(\rho) = \inf_{\{p_j, \Psi_j\}} \sum_j p_j \sqrt{\langle \Psi_j | \otimes \langle \Psi_j | A | \Psi_j \rangle \otimes | \Psi_j \rangle} ,$$

with a multipartite generalization of A.

[Mintert et al., PRL 2005]

This provides the desired tool for our assessment of the crucial scaling properties!

General structure of A

More explicitly, A in terms of antisymmetric and symmetric operators reads

$$A = \sum_{s_1, \dots, s_N} p_{s_1, \dots, s_N} P_{s_1} \otimes \dots \otimes P_{s_N}, \, s_i \in \{-, +\}, \, s_1 \cdot \dots \cdot s_N = +1.$$

Special choice of $p_{s_1,...,s_N} = 4$, for all admissible choices of $s_1,...,s_N$, leads to

$$c_N(\Psi) = 2^{1-\frac{N}{2}} \sqrt{(2^N - 2)\langle \Psi | \Psi \rangle^2 - \sum_j \operatorname{tr} \rho_j^2}$$

This has the particular property

$$C_{N+1}(\psi_{1,...,N} \otimes \phi_{N+1}) = C_N(\psi_{1,...,N}).$$

Allows to compare the entanglement of states with an increasing number of parties. [Demkowicz-Dobrzański et al, PRA 2006]

Explicit evaluations

The (numerical) evaluation of the infimum

$$c(\rho) = \inf_{\{p_j, \Psi_j\}} \sum_j p_j \sqrt{\langle \Psi_j | \otimes \langle \Psi_j | A | \Psi_j \rangle \otimes | \Psi_j \rangle}$$
(1)

provides an *upper* bound of $c(\rho)$. . . we need *lower bounds*!

The algebraic structure of (1) leads to a hierarchy of approximations from below

- 1. **optimized lower bound** (numerical optimization over lower dimensional $n_1^2 n_2^2$, instead of $n_1^3 n_2^3$ optimization space) [Mintert et al., PRL 2004]
- 2. algebraic lower bound (diagonalization of a matrix of dimension equal to the maximal rank $-n_1^2n_2^2$ of A)
- 3. **quasi pure approximation (qpa)** diagonalization of matrix of dimension of $\rho n_1 n_2$ [Mintert & –, PRA 2005]

Dynamics under nonvanishing environment coupling

Various types of dynamics

1. entanglement decay due to coupling of subsystems to "private" baths

$$\frac{d\rho}{dt} = -\frac{i}{\hbar} [H_{\rm sys}, \rho] + \mathcal{L}\rho = -\frac{i}{\hbar} [H_{\rm sys}, \rho] + \sum_j \frac{\Gamma_j}{2} \left(2 \, d_j \, \rho \, d_j^{\dagger} - d_j^{\dagger} \, d_j \, \rho - \rho \, d_j^{\dagger} \, d_j \right)$$

- 2. random system-environment time evolution with subsequent trace over the "public" environment
- 3. entanglement generation vs. decoherence

Entanglement decay of bipartite two-level systems

Initial states $|\Psi^+\rangle = (|01\rangle + |10\rangle)/\sqrt{2}$ (left) and $|\Phi^+\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ (right)

• coupling to **thermal bath** with

- zero temperature (only spontaneous emission; dotted line)
- finite temperature ($\bar{n} = 0.1$ thermal photon in the environment; dashed)
- infinite temperature (noisy environment; solid)
- or to **dephasing reservoir** (only coherence loss; long dashed)

(multi-) exponential decay with finite or infinite separability times

[Mintert, Carvalho, Kuś, -, Phys. Rep. 2005]

N-partite entanglement decay (private baths)

We generalize bipartite concurrence $c_2(\Psi) = \sqrt{2(\langle \Psi | \Psi \rangle^2 - \text{tr} \rho_r^2)}$ for N-partite systems (with j counting all possible partitions):

 $c_3(t)$

 $c_N(t)$ for N=3W-states (solid lines) $|\mathbf{W}_N\rangle = (|00\dots01\rangle + |00\dots10\rangle$ $+\ldots+|10\ldots00\rangle)/\sqrt{N}$ GHZ-states (dashed lines) $|\mathrm{GHZ}_N\rangle = (|00\dots0\rangle + |11\dots1\rangle)/\sqrt{2}$ zero temperature (circles),

infinite temperature (squares), and **dephasing** (triangles) environments.

[Carvalho et al., PRL 2004]

Scaling of entanglement decay rates γ (private baths)

top: $|\text{GHZ}_N\rangle = (|00...0\rangle + |11...1\rangle)/\sqrt{2}$ bottom: $|W_N\rangle = (|00...01\rangle + |00...10\rangle$ $+ ... + |10...00\rangle)/\sqrt{N}$

circles: zero temperature environment **squares**: infinite temperature **triangles**: dephasing

W-states' decay rates *independent* of *N* for zero temperature and dephasing!

[Carvalho et al., 2004] similar demarche: [Dür & Briegel, 2004] (also see [Yu & Eberly, 2004])

Random time evolution (*public bath*)

- Concurrence for an initially pure, maximally entangled 3×5 bipartite state $|\Psi_0\rangle = \sum_{j=1}^3 |jj\rangle/\sqrt{3}$ under random, non-unitary time evolution; $\alpha_{\rm sb}$ system-environment coupling strength
- dash-double dotted line: von Neumann entropy $S = -\text{tr}\rho_{\text{sys}} \ln \rho_{\text{sys}}$ (measures mixing) [Mintert, -, PRA 2005]

Wrap-up II-1

- entanglement monotones as functions of Schmidt coefficients, for bipartite pure states
- convex roof construction for **mixed states entanglement**
- (multipartite) concurrence as expectation value of a projection-valued operator with respect two copies of the state
- efficiently evaluable **lower bounds of multipartite concurrence** which get in general tighter with increasing purity
- examples for **entanglement decay rate scaling** with system size

Wrap-up II-2

BUT: with increasing system size, scaling still unfavourable!

So far: evolve $\rho(t)$, deduce $c[\rho(t)]$

- ? Can we assess c(t) directly?
- ? Why does c(t) evolve the way it does?
- ! state space topology and reference states
 - provide **systematic understanding** of dynamical evolution
 - reduce the complexity of mixed state entanglement estimation

Statistical-topological approach to entanglement evolution [PhD Markus Tiersch, 2009]

Can we give a **robust**, generic description of c(t)?

- monitor evolution of uniform distribution of pure initial states -

Entanglement distribution for increasing system size

 $P\left(|E(\rho) - \overline{E}| > \epsilon\right) \le 4\exp\left(-\operatorname{const} \times 2^{N} \epsilon^{2}\right)$

– universal dynamics emerge in the macroscopic limit $N \to \infty$ –

[Tiersch et al., arXiv 2008]

Wrap-up III

- entanglement concentrates exponentially in high dimensions
- entanglement becomes more robust in high dimensions
- entanglement evolution can be well predicted by benchmark state

Take home message, & some open questions

- There are tools to characterize (quantify/estimate/sample) mixed state entanglement in high dimensional, multicomponent, open quantum systems
- Is there a good reason to consider local Hamiltonians as those which abound in nature? (rhetoric question . . .)
- Yet, it is likely that we still need some new ideas to characterize high dimensional entanglement, to aid our intuition (we have some, but any good ...?)
- Is it possible to derive a general entanglement evolution equation alike Lindblad?
- Entanglement classification in e.g. atomic/molecular systems with coupled discrete and continuous spectra?

Literature (selection)

- Życzkowski & Horodecki³, Phys. Rev. A 65, 012101 (2002); Dür & Briegel, Phys. Rev. Lett. 92, 180403 (2004); Hein, Dür & Briegel, Phys. Rev. A 71, 32350 (2005);
- Yu & Eberly, Phys. Rev. B68, 165322 (2003); Phys. Rev. Lett. 93, 140404 (2004); Science (2009);
- Carvalho et al., PRL 93, 230501 (2004); Mintert et al., PRL 92, 167902 (2004); Fine et al., PRB 71, 153105 (2005); Mintert et al., PRA 72, 12336 (2005); PRL 95, 260502 (2005); Walborn, Mintert et al., Nature 440, 1022 (2006); Aolita & Mintert, PRL 97, 050501 (2006); Carvalho et al., Eur. Phys. J. D 41, 425 (2007); Carvalho et al., PRL 98, 190501 (2007); Mintert et al., PRL 98, 140505 (2007); García-Mata et al., PRL 98, 120504 (2007); Konrad, de Melo, Tiersch, Kasztelan et al., Nature Physics 4, 99 (2008); Tiersch et al., PRL 101, 170502 (2008); Schmid, Mintert et al., PRL 101, 260505 (2008); Tiersch et al., 0810.2506; Platzer et al., PRL 105, 020501 (2010); Viviescas et al., ibid., 210502 (2010)
- van Velsen & Beenakker, Phys. Rev. A 70, 32325 (2004); Bandyopadhyay & Lidar, quant-ph/0408174;
- F.A. Bovino et al., Phys. Rev. Lett. **95**, 240407 (2005);
- Roos et al., Phys. Rev. Lett. 92, 220402 (2004); M.P. Almeida, F. de Melo & Cie., Science 316, 579 (2007)
- N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Phys. Rev. Lett. **98**, 063604 (2007).

More to read and do . . .

- Mintert, Carvalho, Kuś, -, Phys. Rep. 415, 207 (2005)
- T. Scholak et al., Semiconductors and Semimetals 83, 1 (2010); arXiv:0912.3560 (Phys. Rev. E, in press)
- Freiburg Research Focus on Quantum Efficiency
 - https://portal.uni-freiburg.de/qe –

• www.quantum.uni-freiburg.de