School and Conference on Modular Forms and Mock Modular Forms and their Applications in Arithmetic, Geometry and Physics

28 February - 18 March, 2011

Appell-Lerch sums

> Sander Zwegers
> Universitaet zu Koeln
> Koeln

Germany

Mock theta functions

Appell-Lerch sums

Sander Zwegers

Universität zu Köln
ICTP, March 11, 2011

Ranks of partitions

The rank of a partition is the largest part minus the number of parts.
The generating function that counts the number of partitions of given size and rank is given by

$$
\begin{aligned}
\mathcal{R}(w ; q):=\sum_{\lambda} w^{\operatorname{rank}(\lambda)} q^{\|\lambda\|} & =\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{\prod_{k=1}^{n}\left(1-w q^{k}\right)\left(1-w^{-1} q^{k}\right)} \\
& =\frac{1-w}{(q)_{\infty}} \sum_{n \in \mathbf{Z}} \frac{(-1)^{n} q^{3 n^{2} / 2+n / 2}}{1-w q^{n}}
\end{aligned}
$$

Watson (1935) found identities for the third order mock theta functions.
For example, for

$$
f(q)=\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(1+q)^{2} \cdots\left(1+q^{n}\right)^{2}}
$$

he found

$$
f(q)=\frac{2}{(q)_{\infty}} \sum_{n \in \mathbf{Z}} \frac{(-1)^{n} q^{3 n^{2} / 2+n / 2}}{1+q^{n}}
$$

with $(q)_{\infty}=(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \ldots=q^{-1 / 24} \eta(\tau)$ and $q=\exp (2 \pi i \tau)$.
He used these identities to find the modular transformation properties of the mock theta functions.

Similar identities have been found for other mock theta functions.

Level 1 Appell function

The level 1 Appell function was studied by Appell (1884), Lerch (1892) and others.
For fixed $\tau \in \mathcal{H}$ we define a function μ of two complex variables u, v by

$$
\mu(u, v)=\mu(u, v ; \tau):=\frac{a^{1 / 2}}{\vartheta(v)} \sum_{n \in \mathbf{Z}} \frac{(-1)^{n} q^{n^{2} / 2+n / 2} b^{n}}{1-a q^{n}}
$$

where $q=\exp (2 \pi i \tau), a=\exp (2 \pi i u), b=\exp (2 \pi i v)$ and $\vartheta(v)$ is the Jacobi theta series

$$
\vartheta(v)=\vartheta(v ; \tau):=\sum_{\nu \in \frac{1}{2}+\mathbf{Z}}(-1)^{\nu} b^{\nu} q^{\nu^{2} / 2}
$$

The Mordell integral
We define the function h by

$$
h(z)=h(z ; \tau):=\int_{\mathbf{R}} \frac{e^{\pi i \tau x^{2}-2 \pi z x}}{\cosh \pi x} d x
$$

with $z \in \mathbf{C}$ and $\tau \in \mathcal{H}$.
This function was studied by Mordell (1920).
As a function of z it is the unique holomorphic function satisfying

$$
\begin{aligned}
h(z)+h(z+1) & =\frac{2}{\sqrt{-i \tau}} e^{\pi i(z+1 / 2)^{2} / \tau} \\
h(z)+e^{-2 \pi i z-\pi i \tau} h(z+\tau) & =2 e^{-\pi i z-\pi i \tau / 4} .
\end{aligned}
$$

Furthermore, it satisfies

$$
h\left(\frac{z}{\tau} ;-\frac{1}{\tau}\right)=\sqrt{-i \tau} e^{-\pi i z^{2} / \tau} h(z ; \tau) .
$$

Near Jacobiness

These properties show that μ behaves nearly like a Jacobi form of weight $1 / 2$ with two elliptic variables.
Its failure to transform exactly like a Jacobi form depends only on the difference $u-v$.

Properties of ν

The function μ has the symmetry property

$$
\mu(u, v)=\mu(v, u)
$$

the elliptic transformation properties

$$
\begin{aligned}
\mu(u+1, v) & =-\mu(u, v) \\
a^{-1} b q^{-1 / 2} \mu(u+\tau, v) & =-\mu(u, v)-i a^{-1 / 2} b^{1 / 2} q^{-1 / 8}
\end{aligned}
$$

and the "modular" transformation properties

$$
\begin{aligned}
\mu(u, v ; \tau+1) & =\zeta_{8}^{-1} \mu(u, v) \\
\frac{1}{\sqrt{-i \tau}} e^{\pi i(u-v)^{2} / \tau} \mu\left(\frac{u}{\tau}, \frac{v}{\tau} ;-\frac{1}{\tau}\right) & =-\mu(u, v)+\frac{1}{2 i} h(u-v ; \tau)
\end{aligned}
$$

$$
\text { with } \zeta_{N}=\exp (2 \pi i / N)
$$

The non-holomorphic part

We can construct a second, but now non-holomorphic, function R whose "non-Jacobiness" matches that of μ

$$
R(u ; \tau):=\sum_{\nu \in \frac{1}{2}+\mathbf{Z}}\{\operatorname{sgn}(\nu)-E((\nu+\operatorname{Im} u / y) \sqrt{2 y})\}(-1)^{\nu-\frac{1}{2}} a^{-\nu} q^{-\nu^{2} / 2}
$$

where $y=\operatorname{Im} \tau$ and E is the odd entire function, defined by

$$
E(z)=2 \int_{0}^{z} e^{-\pi u^{2}} d u
$$

Properties of R

Properties of $\widehat{\mu}$

If we now set

$$
\widehat{\mu}(u, v ; \tau):=\mu(u, v ; \tau)+\frac{i}{2} R(u-v ; \tau)
$$

then $\widehat{\mu}$ is symmetric in u and v and satisfies the elliptic transformation properties

$$
\widehat{\mu}(u+1, v ; \tau)=a^{-1} b q^{-1 / 2} \widehat{\mu}(u+\tau, v ; \tau)=-\widehat{\mu}(u, v ; \tau)
$$

and the modular transformation properties

$$
\begin{aligned}
\widehat{\mu}(u, v ; \tau+1) & =\zeta_{8}^{-1} \widehat{\mu}(u, v ; \tau) \\
\widehat{\mu}\left(\frac{u}{\tau}, \frac{v}{\tau} ;-\frac{1}{\tau}\right) & =-\sqrt{-i \tau} e^{-\pi i(u-v)^{2} / \tau} \widehat{\mu}(u, v ; \tau)
\end{aligned}
$$

A mock Jacobi form

So $\widehat{\mu}$ transforms like a Jacobi form of weight $1 / 2$ and index $\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$. Of course, $\widehat{\mu}$ is no longer holomorphic.

A period integral

In applications we usually specialize the elliptic variables u and v to torsion points: elements of $\mathbf{Q} \tau+\mathbf{Q}$.
This kind of specialization done on Jacobi forms, gives functions of τ, which are modular forms up to a rational power of q.
For $u=\alpha \tau-\beta$, with $\alpha, \beta \in \mathbf{R},|\alpha|<1 / 2$, we get

$$
e^{-\pi i \alpha^{2} \tau+2 \pi i \alpha(\beta+1 / 2)} R(\alpha \tau-\beta)=-\int_{-\bar{\tau}}^{i \infty} \frac{g_{\alpha+1 / 2, \beta+1 / 2}(z)}{\sqrt{-i(z+\tau)}} d z
$$

with

$$
g_{\alpha, \beta}(z):=\sum_{\nu \in \alpha+\mathbf{Z}} \nu q^{\nu^{2} / 2} e^{2 \pi i \nu \beta}
$$

a unary theta function of weight $3 / 2$.

Higher level Appell functions

For $I \in \mathbf{Z}_{>0}$ the level I Appell function $A_{\text {I }}$ is defined by

$$
A_{l}(u, v)=A_{l}(u, v ; \tau):=a^{l / 2} \sum_{n \in \mathbf{Z}} \frac{(-1)^{\ln } q^{\ln (n+1) / 2} b^{n}}{1-a q^{n}}
$$

where as usual $a=\exp (2 \pi i u), b=\exp (2 \pi i v)$ and $q=\exp (2 \pi i \tau)$.
For $I=1$ we have

$$
A_{1}(u, v)=\vartheta(v) \mu(u, v)
$$

Transformation properties of \widehat{A}_{l}
Using the correction term for μ we can now find a correction term for A_{l} to get \widehat{A}_{l} which has the elliptic transformation properties

$$
\begin{aligned}
& \widehat{A}_{l}(u+1, v)=(-1)^{\prime} \widehat{A}_{l}(u, v) \\
& \widehat{A}_{l}(u, v+1)=\widehat{A}_{l}(u, v) \\
& \widehat{A}_{l}(u+\tau, v)=(-1)^{\prime} a^{\prime} b^{-1} q^{\prime / 2} \widehat{A}_{l}(u, v) \\
& \widehat{A}_{l}(u, v+\tau)=a^{-1} \widehat{A}_{l}(u, v)
\end{aligned}
$$

and the modular transformation properties

$$
\begin{aligned}
& \widehat{A}_{l}(u, v ; \tau+1)=\widehat{A}_{l}(u, v ; \tau) \\
& \widehat{A}_{l}\left(\frac{u}{\tau}, \frac{v}{\tau} ;-\frac{1}{\tau}\right)=\tau e^{\pi i(2 v-l u) u / \tau} \widehat{A}_{l}(u, v ; \tau)
\end{aligned}
$$

We see that $\widehat{A}_{\text {I }}$ transforms as a Jacobi form of weight 1 and index $\left(\begin{array}{cc}-I & 1 \\ 1 & 0\end{array}\right)$, and we could call $A_{\text {l }}$ a mixed mock Jacobi form.

Reduction to level 1

We can reduce the study of these functions to the case $I=1$, with the equations

$$
\begin{aligned}
& A_{l}(u, v ; \tau)=\sum_{k=0}^{I-1} a^{k} A_{1}(l u, v+k \tau+(l-1) / 2 ; l \tau) \\
& A_{l}(u, v ; \tau)=\frac{1}{l} a^{(I-1) / 2} \sum_{k \bmod l} A_{1}(u,(v+k) / l+(l-1) \tau / 2 / ; \tau / l)
\end{aligned}
$$

The first one follows from

$$
\frac{1}{1-x}=\frac{1+x+\ldots+x^{\prime-1}}{1-x^{\prime}}
$$

and the second one from

$$
\frac{1}{l} \sum_{k \bmod I} e^{2 \pi i n k / I}= \begin{cases}1 & \text { if } n \equiv 0 \bmod / \\ 0 & \text { otherwise }\end{cases}
$$

Examples

Using these results we can find the transformation properties of the mock theta function f.
We set

$$
\widehat{f}(\tau)=q^{-1 / 24} f(q)+\frac{i}{\sqrt{3}} \int_{-\bar{\tau}}^{i \infty} \frac{g(z)}{\sqrt{-i(z+\tau)}} d z
$$

with

$$
g(\tau)=\sum_{n \equiv 1 \bmod 6} n q^{n^{2} / 24}
$$

Then \widehat{f} is a harmonic weak Maaß form of weight $1 / 2$ on $\Gamma_{0}(2)$.

The rank generating function

We can also apply these results to the rank generating function

$$
\mathcal{R}(w ; q)=\frac{1-w}{(q)_{\infty}} \sum_{n \in \mathbf{Z}} \frac{(-1)^{n} q^{3 n^{2} / 2+n / 2}}{1-w q^{n}}
$$

We take $w=\zeta \neq 1$ a root of unity and add a correction term

$$
\widehat{\mathcal{R}}(\zeta ; q)=q^{-1 / 24} \mathcal{R}(\zeta ; q)-\frac{i}{12}\left(\zeta^{1 / 2}-\zeta^{-1 / 2}\right) \sqrt{3} \int_{-\bar{\tau}}^{i \infty} \frac{g(z)}{\sqrt{-i(z+\tau)}} d z
$$

with $g(\tau)=\sum_{n \in \mathbf{Z}} n\left(\frac{12}{n}\right) \zeta^{n / 2} q^{n^{2} / 24}$.
Then $\widehat{\mathcal{R}}(\zeta ; q)$ is a harmonic weak Maaß form of weight $1 / 2$ on some congruence subgroup of $\mathrm{SL}_{2}(\mathbf{Z})$ (of finite index).

References

- "Ramanujan's mock theta functions and their applications" D. Zagier, Séminaire Bourbaki
- "Mock theta functions"
S. Zwegers, PhD. Thesis
- "Séries thêta des formes quadratiques indéfinies"
M.-F. Vignéras, Modular forms of one variable VI, LNM 627
- "Introduction to modular forms"
D. Zagier, in "From number theory to physics".
- "The Eichler-Selberg trace formula on $\mathrm{SL}_{2}(\mathbf{Z})$ "
D. Zagier, appendix in "Introduction to modular forms", S. Lang
- "Elliptic modular forms and their applications"
D. Zagier, in "The 1-2-3 of modular forms"

