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Polymer Processing

with Controlled Degradation as Desired Result

PTFE (Teflon) irradiation (MW and particle size decrease, oxidation)
— Compatabilization; additive for inks, lubricant

Polypropylene irradiation (alteration of MW distribution)
— Improved processing properties, higher melt flow index

Viscose process (partial degradation of cellulose) for making Rayon
Irradiation of other natural polymers (chitin, etc)

Surface modification of polymers (adhesion, wetting)

Polymer recycling

“Peroxidation” method of grafting (oxidation is an intermediate step in the
processing)



Polymer Processing
in which Degradation is an Unwanted Byproduct

Radiation sterilization of disposable medical items
— (Polypropylene syringes, rubber gloves, cell culture dishes, etc.)

Radiation treatment of UHMWPE: hip and knee joint
replacement

- Improved wear properties, plus sterilization

Numerous crosslinking and curing applications

In these cases, the desired result is to minimize degradation to
the extent possible

— (process conditions, stabilizer additives, post-irradiation annealing)



« Stability of polymers in long-term radiation
environments, in the presence of air

— containment buildings of nuclear power plants (cable insulation, etc.)
— radioisotope processing facilities
— large particle physics facilities (CERN, Fermilab, etc.)



Most Applications of Polymers plus Radiation Involve Exposure to O,,
Either During or After Irradiation (or Both)

« Oxidation Chemistry typically dominates the
Irradiation Chemistry

We set out to provide a better method for detailed
understanding of the mechanisms of radiation-
oxidative degradation of polymers



Goals of detailed studies of
polymer oxidation mechanisms

Identify molecular structures on the polymer backbone, after
irradiation, including “unstable” species, such as peroxides

Conduct chemical analysis directly on intact (solid) polymers,
without dissolving

Follow the evolution of various oxidation products as a
function of time

Identify low molecular weight oxidation products (organic
compounds) resulting from chain cleavage in oxidizing
polymers, and determine the mechanisms (chemistry) of their
formation

Understand the mechanism by which CO and CO, are formed
from polymers, during radiation oxidation

Begin correlating oxidation chemistry with changes in
macroscopic properties observed in earlier studies




. _ud There are Few Methods to

Directly Observe Hydroperoxides

Indirect Direct
(chemical modification
& often dissolution) * infrared detection
* colorimetric — isolated hydroperoxides
— ijodometric analysis « NMR
— ferrometric — solution
complexation Cheng, Schilling, Bovey
+ infrared detection PREIIE. 1959, 9, 209
Jelinski et. al.
— hydrosulfates Macromol. 1984, 17, 1650.

— nitrate groups

Goalirect observation witho dissolution -
| real time observatn in the solid st.

i




A very short course
in NMR Spectroscopy.

The three most common elements
in aged organic materials are hydrogen
carbon and oxygen:

: Although hydrogen has an abundant
Active Natural active isotope, it is not the most

Isotope _Abundance Enriched useful for chemical analysis.

Carbon is most useful for

0 H 99.98 % characterizing the polymer chain.

13C 1.1 % 99 %

170 0.037 % 80 % Oxygen is useful for
characterizing oxidation.

Isotope labeling will provide increased sensitivity and
enable us to selectively examine the aging process.




| -4 Isotopic Labeling + NMR for Understanding
Polymer Irradiation Effects

Degradation, Oxidation, Hydrolysis




Oxidation of Organic Materials is being
Investigated by 7O Isotope Labeling

i} i < This slide demonstrates the use
= 0, of isotopically enriched oxygen
0 C gas to study the oxidative
L e degradation of organic
materials under environmental

hv
stress

o AR

The NMR spectrum shows the
Polyisoprene | complex mix of products
50 day { formed by polyisoprene; each
OR (3 =-13.8 ppen)
I

L/
*»r

59 days
resonance corresponds to a
specific chemical structure

Isotope labeling combined with NMR spectroscopy
provides a sensitive probe of the degradation products




0-17 NMR

Oxidative Degradation Product Identification
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'0-17 NMR Spectra of Material Following
y-Irradiation Under O-17 Labeled O,

Carboxylic Acids
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Oxidation Products in Pentacontane (C5,H,,)
by O-17 NMR
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Isotopic labeling of the polymer (prior to
irradiation experiments)

C-13 Labeling of:
— Polyethylene
— Polypropylene

Irradiation Experiments are conducted
under “ordinary” air atmosphere [0-16]

Measurements by C-13 NMR



Polyethylene-13C, was
Enriched at the 99 % Level.

0.74 kG/h
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Annealing Experiments Were Used to
Distinquish Between Reaction Pathways.

 Several reaction pathways have < After radiation aging for 7 days,
been proposed in the literature. the sample is annealed at 110 C
for 20, 40 and 60 minutes.
Polyethylene : "H0C ameal
¢ (O s | S (o

: — A - Alcohols
01 k ,

0.8 |-

Products (%)

0.06 |-

N

002 |-

Produets
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Time (m)

<+ We find that the hydroperoxide is
converted primarily to ketones.



Annealing at Various Temperatures Enables

One to Measure the Activation Energy.

i1 : : :
° |
[+7]
.E b 4
° -
Z 06 ~ §
“ b
1]
o I ]
X 04 -
o ! ]
[}
e
g 02 - _
>
T [ _ :
0 AL 1 IiJIIIj A llIlLLJL ' 'S ]Allll‘ L A LA L LAl
100 1000 10* 10° 10°

Time (s)

<+ Annealing was done in situ for
intermediate temperatures.
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<+ Shift factors for the hydro-
peroxide half-life were cal’c.
Half-life of species ~ 4 months
at ambient temps.



Using C-13 (labeled polymer)

* Readily see oxidation products at low extent of conversion

* Direct quantitative measurements on oxidized SOLID polymer
- (no dissolving, heating, or other sample treatment)

* Have followed thermal decomposition of peroxides formed in
PE after y irradiation in air:

- Measured E , in solid phase (23.4 kcal/mol)

- Followed appearance of oxidation products as the
peroxides decomposed (ketones predominate)

* Also measure radiation-induced changes in crystallinity in PE



Selective Labeling of Polymers for
Irradiation Experiments: [Polypropylene]

Selective isotopic labeling with carbon-13

C(2) labeling C(1) labeling
(le3 (leB
Ll-cm) L =g
oo oo

C(1,3) labeling
32% CHy For the C(1,3) labeled PP,
| the 68/32 distribution was
_GC_CHZ} the result of scrambling
| * during polymerization.
H 68% I

Selective 13C labels allow for the identification of oxidation products,
their origin on the PP chain, and their relative concentrations with
increased sensitivity.



* Prepared 3 polypropylene samples with specific Carbon-13 labels

|
CH2—C|H CHy—
CHj;
n
unlabeled Cc(1)
ﬂéc

C(2) C(1,3)

 Goal: Map oxidation products back to macromolecular structure

* Analytical Techniques:
Solid-state 3C NMR (solid products)
FTIR (solid products)

GC/ mass spec (volatile products)



13C NMR Spectra of Post-Irradiation
Thermally Aged Polypropylene

C(2) labeled polypropylene
exposed to 24 Mrad of y-radiation
in argon at 24°C and then
subjected to post-irradiation
thermal aging in air at 109°C.

The major degradation products
are tertiary peroxides, tertiary
alcohols and methyl ketones.
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Functional groups
per 100 methine (CH) units

The product distribution for both
the C(2) and C(1) carbons are
similar to thermally aged samples.
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group resonances.

(m) tertiary hydroperoxides / dialkyl peroxides
(e) tertiary alcohols

(A) methyl ketones

(A) in-chain ketones

(o) esters and/or peresters on C(2) carbon

(V) esters on C(1) carbon

(0) ketals on C(2) carbon (114.1 ppm)

(o) ketals on
(x) ketals on

C(2) carbon (105.7 ppm)
C(1) carbon (100-117 ppm)



Y-Radiation Oxidation at 80°C
Kinetic Accumulation of Oxidation Products
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* Unlike thermo-oxidative aging, no apparent induction period is present
with product accumulation in y-radiation oxidation.

* The product accumulation is also much faster with y-irradiation.

y-Radiation aging: Film samples were subjected to y-
irradiation under flowing air at room temperature (24°C)
and at 80°C. The y-radiation was generated with a °Co
source at a dose rate of 80-90 krad/h.




13C Resonances of Oxidation-Induced Functional Groups Observed in
Solid-State NMR Spectra of Selectively Labeled Polypropylene Samples.

13C
chemical PP Aging conditions
. Oxidative functional group position %
shift of origin observed
(ppm)
215 Dk B in-chain cm v (80°C)
(broad) H§H ketone Y (109°C)
o)
hyl
207 CHs methy v (24°C, 80°C)
~C-C-€-CHy (chain-end) C(2) Y900 109°
(broad) HoH2 ot v (22°C - 109°C)
~185 ohs carboxylic v (24°C)
(broad) ¥ ﬁzg o acid €@ Y (22°C)
~179 FHy y (24°C, 80°C)
(broad) qEx ester cM ¥ (22°C, 109°C)
CHs
~~C-C-€-OR ester
170-175 HHeo
(broad) CQ) v (24°C, 80°C)
CHy ¥ (22°C - 109°C)
~~C-C-C-00R perester
H Hy
3
- ~r0¥C-0n ketal
l((s)gvelrg E c(l) ¥ (24°C, 80°C)
: C2) v (22°C — 109°C)
peaks) NO—'lE':—OH hemiketal
CH, .
G G-Chy ) dternary y
053 OOH ydroperoxide | - | v (24°C, 80°C)
' , & - v (22°C — 109°C)
HsC “C-0-0-C-CH, dlalk.y 1
3 g peroxide
CHs . 0 0
TR tertiary v (24°C, 80°C)
742 SO alcohol €@ ¥ (22°C - 109°C)

Y = exposure to y-
radiation in air

v' = exposure to y-
radiation in 24°C
argon,

followed by post-
irradiation thermal
aging in air



Functional groups
per 100 methine (CH) units
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NMR: Irradiated Polymer held at room temperature in air, for over 2 years
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Oxidation products in PP exposed to y-radiation (240 kGy) in 24 °C
argon followed by post-irradiation thermal aging in 22 °C air. (a) C(2)
labeled sample; (b) C(1,3) labeled sample. (m) tertiary hydroperoxides
and/or dialkyl peroxides; (¢) tertiary alcohols; (A) methyl ketones; (A)
in-chain ketones; (V) carboxylic acids on C(2) carbon; (o) esters and/or
peresters on C(2) carbon; (V) esters and/or peresters on C(1) carbon;
(©) ketals on C(2) carbon (114.1 ppm); (o) ketals on C(2) carbon (105.7
ppm); (x) ketals on C(1) carbon (100-117 ppm).



The Activation Energy for
Accumulation of Tertiary
Peroxides
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An Arrhenius plot of the tertiary
peroxide accumulation rate for
C(2) labeled polypropylene.

Ea = 68 kdJ/mol
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y-radiation in argon at 24°C
followed by thermal aging in air.
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Further Comparison of Aging Mechanisms
in Polypropylene and Polyethylene

* Peroxide Concentration

— Radiation aging
» Polyethylene: ~0.1%
» Polypropylene: > 6%

* Peroxide Stability
— Polyethylene: 4 life of < 30 hrs at
65°C
— Polypropylene: very long lifetime

during extended periods at elevated
temperatures (even 110°C)



Pre-irradiation Eliminates the Induction Time
Associated with Thermal Degradation
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Accumulation of tertiary peroxide groups in solid C(2) labeled polypropylene:
(0) samples exposed to y-radiation (24 Mrad) in argon at 24°C followed by
post-irradiation thermal aging in air
(m ) thermally aged in the absence of y-radiation

The kinetics for the two processes are similar in the
linear portion of the buildup region.
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Peroxide

Polymeric Oxidation Products
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Radiation Oxidation of Polypropylene
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Oxidation-Induced Functional Groups Observed on the C(2) Carbon in Polypropylene

Samples y-Irradiated in Argon Followed by Post-Irradiation Thermal Aging in Air

Post-irradiation aging temperature and time

Functional o o o o
group 22°C | 80°C | 95°C | 109°C
675-731d|145-229h| 55-80h | 50-70h
Tertiary
hydroperoxides/ 62.2 55.9 54.4 50.3
dialkyl peroxides
methyl 6.2 10.3 13.1 14.8
ketones
carboxylic acids 2.6 0.7 0.2 —
esters/peresters 3.9 5.5 6.5 9.9
ketals
(114.1 ppm) 1.1 2.1 24 1.5
ketals 6.6 4.8 42 33

(105.7 ppm)




Exposed to Y-Radiation or Thermal Aging in Air

Functional Groups Observed by NMR in Polypropylene Samples

Functional
group

Aging temperature

and radiation dose / thermal aging time after induction

period

24°C, 230 kGy
irradiation

80°C, 170 kGy
irradiation

80°C,~175h
no irradiation

CQ2P® C@a,3)

Cc@2)® C@3)

CQ2P® C@3)

tertiary
hydroperoxides/
dialkyl peroxides

methyl
ketones

carboxylic acids
on C(2) carbon

esters/peresters
on C(2) carbon

esters/peresters
on C(1) carbon

in-chain
ketones

ketals
on C(2) carbon
(114.1 ppm)

ketals
on C(2) carbon
(105.7 ppm)

ketals
on C(1) carbon

58.5 —

4.4 —

46.0 —

13.5 —

2.3 —

2.7 —

42.7 —

8.0 —

— 13.8

2.2 —

4.1 —




Radiation Oxidation of Polypropylene
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Polymeric Oxidation Products

hen 85-90% C(2)
[ 10-15% C(1)
wCHy— CHw . 0
0% C(3)
Illc|:H3
| 1l |
I wCHy—C—CHap™
m(|;|-|3 | "C|3HI3 o e ey '0 wloHo—E—0—R
WWICHZ_"C_ICHZWW WWCHZ_(II:_CHZWW 2 8 3 ICH L JICH 2 g
OOH OH 2~ CHs
OH
Peroxide Alcohol Methyl Ketone Hemiketal Ester

« Chain scission indicator: C(2) methyl ketone: Yield rises more than
C(2) alcohol at elevated temperature

« This change in mechanism at higher temperatures explains
radiation/thermal “synergism” in mechanical property changes,
during “combined environment” degradation experiments




Polymeric Oxidation Products

hen 85-90% C(2)
[ 10-15% C(1)
W"”ICHZ_"CHWW‘ o 0
0% C(3)
I"c|:H3
| 1l |
I wCHy—C—CHap™
u|(|;|-|3 | "(|3H|3 o e ey '0 wloHo—E—0—R
WWICHZ_"C_ICHZWW WWCHZ_CI:_CHZWW 2 g 3 ICH L JICH 2 8
OOH OH 2~ CHs
OH
Peroxide Alcohol Methyl Ketone Hemiketal Ester

 New degradation product identified (Hemiketal)



Radiation Oxidation of Polypropylene
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Chemical Mechanism for the Formation of
Hemiketals

Hj Hj3
| | Hj H;

~~~CH,—C—CH;—CH~~~ | |
| e CHZ—(lj —CH,— CH

Qe
0 H,
— I I
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| Oe
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0 1
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FTIR: Spectra of C-13 labeled small
molecules [model compounds]
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IR spectra obtained from polypropylene
following irradiation in oxygen
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GC/ mass spec

Analysis of Volatile Radiolysis Products:
CO,; CO; and Small Organic Molecules

Volatile (gaseous) products well known to form under
irradiation

These molecular fragments can offer insights into radiation-
degradation chemistry

Because they are small molecules, exact molecular
structural identification is possible

Analysis by Gas Chromatography, Mass Spectroscopy



Ratio of 1°CO, versus 2CO, by Mass Spec

13C0
C(1) 2 C(2)
2 1 2 Coz
2 &
2 CO, £
T ] e
-09; ug; Ar
Ar 13C02
a L ]
39 40 41 42 43 44 45 46 47 30 40 41 42 43 44 45 46 47
m/z m/z
" 0/0 COZ
CH;

. C(1) 60% [+10%]
w~CHa—CH» C(2) 10% [+ 10%]
C(3) 30% [+ 15%)]

o % CO
Similar Mass Spec Measurements

were made for 13CO versus 12CO C(1) 90% [+ 10%]
C(2) 5% [ + 10%)]
C(3) 5% [ + 10%)]



Radiation Oxidation of Polypropylene
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Formation of CO and CO, at C(1)
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Many volatile products are formed when polymers are irradiated.
With GC/MS, we can gain insight into the radiation chemistry that led
to their formation An example:

H3C_|CH_CH2_9_CH3
CH;

Methylisobutylketone



Many volatile products are formed when polymers are irradiated.
With GC/MS, we can gain insight into the radiation chemistry that
led to their formation
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Many volatile products are formed when polymers are irradiated.
With GC/MS, we can gain insight into the radiation chemistry that
led to their formation
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Assigned Structure of Methylisobutylketone
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Labeling Specificity = 100%
One predominate route
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33 volatile compounds from PP radiation-oxidation identified
Among the 31 “catenated’ products:

15 have oxidation at C(2)

9 are methyl ketones, with C(2) carbonyl and C(3) methyl

2 have oxidation at C(1) [an alcohol and an aldehyde]

No oxidation at C(3). C(3) always methyl, connected to C(2)

26 retain the PP connectivity [no C(1)-C(1), no C(1)-C(3), no C(3)-C(3)]

Can understand formation route as 2 chain scissions, by methyl ketone
mechanism, and possibly direct C-C scission from irradiation
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1 i

o] CH; CH;

3 products have single carbon atoms. All are C(1) and C(3) mix
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Chemistry leading to 3 of the products found:
methylisobutylketone, acetone, isobutane
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PP degradation products having > 2 interconnected C-atoms, which
form from two chain cleavages without rearrangement, will always
have an odd number of C atoms along their chain length.




Some Compounds Have Mixed Isotopic Labeling
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Some Compounds Have Mixed Isotopic Labeling
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Some Compounds Have Mixed Isotopic Labeling

Lor Il n land lll' | i
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For PP degradation products with > 2 interconnected C-atoms, an
even number of C atoms along the chain length indicates formation
via radical-radical coupling.



Final Summary

Isotopic labeling (0-17 and C-13): New method for detailed tracking
polymer radiation-chemistry, for oxidative degradation

Polymer samples can be prepared with selective isotopic labeling
(This study used 3 labeled polypropylene samples, each with C-13 in
one of the three carbon positions along the chain)

Analysis by NMR (macromolecular products), and by GC/MS (volatile
products) allowed quantitative measurements of the time-dependent
evolution of oxidation products

Extensive characterization of Peroxides in PE (low concentration, low
stability) vs. in PP (high concentration, higher stability), obtained,
including concentrations, activation energies, and decomposition
routes

Previously unknown oxidation product (hemiketal) discovered



Final Summary

Allows “mapping” of volatile (small molecule) oxidation
products onto positions of origin from original polymer

Small-molecule oxidation products coming “directly” from 2
chain scission events in PP, retain their original
connectivity of carbon atoms, and always contain an “odd”
number of carbon atoms (1,3,5,7,9....).

In PP, most macromolecular oxidation products, and small-
molecule oxidation products, result from oxidation at the C-
2 carbon atom. However, CO and CO, result mainly from
oxidation at the C-1 carbon atom.

Provides insights into polymer radiation effects (such as
synergism between radiation and elevated temperature).





