The role of soil moisture on Southern Africa climate

Marshall L. Mdoka$^{1,2}$

M Tadross and B Hewitson$^2$

1. Geography and Environmental Science, Monash South Africa
2. Climate Systems Analysis Group, University of Cape Town, South Africa
Synopsis

• Concern - The role of factors of climate variability over southern Africa:
  ➢ Land surface-Atmosphere Interactions project.

• The role of soil moisture conditions on climate variability over the region.
  • Feedbacks mechanisms.
  • Synoptic analysis
  • Sub-regional analysis
Experimental set-up

Control run

- RegCM3,
- 50 km Resolution ,
- MIT- Emanuel Scheme,
- NCAR-NCEP reanalysis, NOAA OISST and GLCC Land Cover.
- Summer simulations – 7 months run for Sep to Mar 1991/92 (dry) and 1995/96 (wet) with 1 month spin-up.

Interactive moisture runs

- As in control run but soil moisture being initialized at:
  - 25% (wilting point) and
  - 75%(saturation point),
  - field capacities in the BATS scheme.
Air Temperature

a) Sep-Mar91/92 RegCM3 (°C)
b) Sep-Mar91/92 CRU (°C)

a) Sep-Mar95/96 RegCM3 (°C)
b) Sep-Mar95/96 CRU (°C)
Total precipitation anomalies

SON

DJF

91/92

95/96
Surface Temperature anomalies

- Similar traits with SH, PBL.
- Contrasting with EVP, LH
- Less response with SWI.
- Non-linearity with net radiation
Diurnal Cycles of surface variables on effect of soil moisture perturbation
Rain Days and intensity
700hPa Geo-Potential Height

SON

DJF
Moisture flux

[Images of four maps showing moisture flux]
Self-organized mapping of NCEP 850hPa Geopotential Height

850 hPa Geopotential height
Self-organized mapping of NCEP 500hPa Geo-Potential Height
Self-organized mapping of NCEP 700hPa Precipitable Water
Median date of occurrence

![Graph showing median dates of occurrence with two data points for 1991.92 and 1995.96.]
Frequency of occurrence
Synoptic patterns classification
Sensible heat flux

Dry-Ctrl runs

Wet-Ctrl runs

1991/92

1995/96
Spatial distribution within the synoptic – Planetary Boundary Layer

Node 1

Node 12

1991/92

1995/96

1991/92

1995/96

Dry- ctrl runs

Wet-ctrl runs
Sub-regional Analysis

Top layer soil moisture

Total Precipitation

Surface and Air Temperature

Latent heat, sensible heat and incident solar radiation
Summary

• The dry soil moisture perturbations result in stronger geopotential responses as compared to the wet soil moisture perturbations.
• This aids in explaining the stronger and persistent positive (negative) responses for surface temperature, sensible heat and PBL (latent heat) observed for dry soil moisture perturbation of the analysed variables during early summer.
• Southwestern parts of the region are consistently showing slight geopotential decreases for all the perturbations of late summer.
• This is consistent with unresponsive characteristics noted over southwestern areas of the region which are typically dry during this season rendering any dry/wet perturbation a forcing that would increase moisture levels.
Summary

• Dominant synoptic state (node 12) shows a surface tropical ridge of HP with a LP system to the SE of the region and mid-level anticyclonic circulation over Indian Ocean but also having low level moisture to the south of the domain.
• These synoptic characteristics are observed to occur during early summer in the seasonal evolution analysis of the SOM array.
• The left side of SOM generally represents the wet synoptic states which occur during mid into late summer for both 1991/92 and 1995/96.
• The SOM does somewhat show the transition to the model’s equilibrium state with responses to soil moisture initialisation showing stronger responses during early summer and favouring dry synoptic states or being influenced by the late winter/spring synoptic characteristics.
• SH and PBL anomalies have spatial consistent positive responses to surface temperature.
• Over the southwestern area, there are no distinctive responses to dry/wet soil moisture perturbations across the synoptic states for the all the surface variables.
Summary

• In general, dry (wet) conditions have positive feedbacks with similar dry (wet) synoptic forcings of the regional climate.

• Anomalous dry forcing persists for longer and exacerbates the changes in the regional circulation especially during a drought or dry period.

• Dry soil induces an anticyclonic anomaly whilst wet soils enhance weak anticyclonic or cyclonic circulation especially over the northern parts of southern Africa.

• There are contrasting responses to soil moisture perturbations over southern parts of the region.

• Aspects of geography and terrain are also influential.
Future

- Comparison of different land surface schemes.
- Longer time-scale simulations.
- Ensemble of RCMs.
- Taking on-board some of the proposed CORDEX metrics!
- Mixed convection schemes.
- Increase resolution depending on the end-user requirements.
Grazie
Thank You
Danke
Tatenda
Obrigado
Merci
Siyabonga
etc