

2234-25

Meeting of Modern Science and School Physics: College for School Teachers of Physics in ICTP

27 April - 3 May, 2011

Photovoltaics and sun energy

di Carlo Aldo University "Tor Vergata" Rome Italy

Photovoltaics and sun energy

Aldo Di Carlo

CHOSE – Centre for Hybrid and Organic Solar Energy

Department of Electronics Engineering

University of Rome "Tor Vergata"

aldo.dicarlo@uniroma2.it

EU Renewable Energy Road Map

The European Community has defined (10 Jan 2007) the following equation

20+20-20=2020

By 2020 EU have to reduce by 20% the CO₂ emissions increase by 20% renewable energy and increase by 20% the energy efficiency

http://ec.europa.eu/energy/index_it.html

CHOSE

Benefits:

- ➤ 443 billion euro investment 2001-2020
- ➤ 115.8 billion euro gained from fuel reduction
- ➤ 130 320 billion euro gained from additional costs
- 2 milioni additional jobs

Renewable energy objectives (2020)

Electricity by renewable energies

Type of energy	1995 Eurostat	2001 Eurostat	AGR * 1995-2001	Projection 2010	AGR * 2001-2010	Projection 2020	AGR * 2010-2020
1. Wind	2.5 GW	17.2 GW	37.9 %	75 GW	17.8 %	180 GW	9.1 %
2. Hydro	87.1 GW	91.7 GW	0.9 %	100 GW	1.0 %	109 GW	0.9 %
3. Photovoltaics	0.04 GWp	0.26 GWp	36.6 %	3GWp	31.2 %	35 GWp	27.8 %
4. Biomass	6.1 GWe	8.7 GWe	6.1 %	27 GWe	13.4 %	54 GWe	7.1 %
5. Geothermal	0.5 GW	0.65 GW	4.5 %	1 GW	4.9 %	2 GW	7.1 %

Source EREC

Annual Growth Rate

Investment and jobs

Investment (billion euro)

	2001-2010	2011-2020	2001-2020
Wind	55	101	156
Photovoltaic	10	66	(76)
Biomass	44	45	89
Hydro	11	9	20
Geothermal	4	7	11
Solar Thermal	16	75	91
TOTAL RES	140	303	443

Jobs

	2010 jobs FTE	2020 Jobs FTE *
Wind	184,000	318,000
Photovoltaic	30,000	245,000
Biomass	338,000	528,000
Biofuels	424,000	614,000
Small Hydro	15,000	28,000
Geothermal	6,000	10,000
Solar Thermal	70,000	280,000
TOTAL RES	1,067,000	2,023,000

CHOSE

EU 2020 - PV technical objectives

Strategies of the European Photovoltaic Industry Association (EPIA)

The European Photovoltaic Industry Association (EPIA) has defined a set of development strategies for achieving the goals of 2020.

Besides increasing the efficiency of silicon modules, EPIA identifies the development of new materials and concepts as a crucial step for achieving these objectives.

Among these new concepts, particular emphasis has been given to organic cells and in particular to Dye Sensitized Solar Cells (DSC).

EPIA considers the DSC as the most mature amongst the OPV technologies and thus pushes for a decisive plan for its research and development that can deliver the first production lines in the near future.

CHOSE

Photovoltaic cell: working principle

"Conventional" photovoltaic cells are based p-n junction between semiconductors.

Photovoltaic cell: short history

1941

Russell Ohl (Bell Labs) discover the silicon p-n junction and the effect of light on the junction

Bell Labs researchers Pearson, Chapin, e Fuller demonstrated the photovoltaic cell with 4.5% efficiency

Solar Spectrum

Efficiency

One of the most important parameters of the photovoltaic cell is the efficiency defined as:

Which are the factors influencing the cell efficiency ?

Materials for photovoltaic cells

Bulk semiconductors

- Silicon
 - Single crystal
 - Multi crystalline
- Gallium arsemide (GaAs)
- Other III-V semiconductors

Thin Films semiconductors

- Amorphous silicon (a-Si)
- Cadmium telluride (CdTe)

CHOSE

- Copper-Indium diselenide (CuInSe2, o CIS)
- Coper-Gallium-Indium diselenide (CIGS)

Organic and hybrid materials

- Small molecules
- Polymers
- Dye Sensitized Solal Cell

Beyond the Shockley-Queisser limit

The maximum thermodynamic efficiency for the conversion of unconcentrated solar irradiance into electrical free energy in the radiative limit, assuming detailed balance, a single threshold absorber, and thermal equilibrium between electrons and phonons, was calculated by Shockley and Queisser in 1961to be about 31%.

W. Shockley and H. J. Queisser. J. Appl. Phys. 32 (1961) 510.

What do we do to achieve efficiencies > 31 % ?

- Concentration
- Multijunction
- No thermal equilibrium

Lab Cell efficiency

CHOSE

Energy from the sun

To satisfy the electricity needs of a typical family one needs 3kWp PV system, i.e. $\sim 20m^2$ of photovoltaic surface (assuming system efficiencies of 15%).

12.000 euro

Cost reduction of PV systems per Wp/m² becomes paramount in order to make PV technology an important instrument for energy production.

COST

Could we reduce cell costs ?

Cost of silicon wafers is high (2 euro/ Wp, one doping level)

Production equipments are expensive

- 100 Meuro for 40 MWp/year amorphous silicon
- 15 Meuro for 30 MWp/year bulk silicon

Is it possible to produce photovoltaic cells by reducting production and material costs ?

Moreover, is it possible to create a photovoltiac module suited for Building Integration (control on colour, transparency etc) ?

This is possible but we have to re-invent the cells and the fabrication processes

"New" manufacture processes

Organic photovoltaics

Туре	Max lab efficiency	Stability	R&D
Hybrid Dye Sensitized (Graetzel)	~ 11-12%	20 years	University and industry
Full organic solar cells	~ 8%	3 years	University and industry

Small Molecules Organic Solar Cell

2) Diffusion of the exciton to the interface with the acceptor.

3) Dissociation of the exciton in a e^{-} and a h^{+} at the interface (charge transfer).

4) Transport of the free charges to the opposite electrodes (electrons towards Al and holes towards ITO).

Charge separation at the 2D interface between donor and acceptor

Breakthrough concept: bulk heterojunction

Interface between A and B materials is two dimensional (2D)

After abosption of ligth, e-h dissociate at the interface

Interface between A and B material tends to be three dimensional (3D) !!!

Absorption surface and dissociation interface increase. More efficient

Polymer Solar Cells (Bulk heterojunction)

Intimate mixure of electron donor and acceptor materials

Charge separation at the distributed interface + percolation to the contacts

Bulk heterojuction=distributed molecular diode

- Any PV device must have a rectifying interface which separates charges (== current/voltage asymetry == diode).
- A "bulk heterojunction" is the homogenous distribution of molecular diodes (hetero interfaces) within a semiconductor bulk.

CHOSE

Organic Solar Cell (OSC)

Bio-Inspired Solar Cell

Dye Sensitized Solar Cells

Working principle of DSC

No permanent chemical transformation in the materials composing the cell

DSC Kinetics

- 1. Dye Excitation
- 2. Electron Injection into TiO₂ Conduction Band
- 3. Oxidation of the electrolyte

- a. Dye relaxes into its ground state
- **b**. Dye regenerated by TiO₂
- **C.** Electrolyte Reduces at TiO₂ surface

Automatic Screen-Printing (Baccini)

Cell optimization

Optimization parameters

Dyes

Comercial TiO₂: Standard Characteristics

CHOSE

✓ Electrolyte Dyesol HPE

Process Improvements 1/2

Introduction of TiCl₄ treatments

Pre TiO_2 deposition + post sintering treatments $TiCl_4$ solution 40mM 30' @ 70°C

Introduction of scattering layer

TiO₂ Dyesol scattering paste WER4-0 Thickness 8 μ m*

Transparent

Not Transparent

CHOSE

Process Improvements 2/2

I/V Characteristics of the $TiCI_4$ treated cell measured with the introduction of back-reflector

Good reproducibility within 2% deviation

Artificial colors with Photonic Crystals

Photonic Crystals are periodic structures, there are natural examples already existing in nature, for instance, the microstructure in the wings of some butterflies causes their remarkable iridescent colours. This structures reflect electromagnetic radiation as propagation through them is prohibited. The action of electromagnetic repulsion / reflection, whatever the frequency at which it occurs, is due to the fabric of the crystal. The periodicity of the crystal plays a very important role in the formation of a useful band gap. The actual width of this band gap depends on the geometry, feature size, spacing and the materials which make up the crystal. The manipulation of light with artificially manufactured photonic crystals is an important new research area.

1D Photonic Crystal

 $\lambda_{BRAGG} = 2(n_1d_1 + n_2d_2)$

CHOSE

Dye Solar Cells with Photonic Crystals (PCs)

From cells to modules Large Area

From small cell to (sub)module

Cell scaling up and colours

Cells with pattern

Cells with pattern

Example of patterned DSC (sigle cells)

CHOSE

From small cell to (sub)module

CHOSE

Large area cells: The sheet resistance

Let us consider a substrate (S=LxW) with TCO on top (tickness of TCO = d)

$$R_{square} = R[\Omega/\Box] = \frac{\rho}{d}$$
 characteristic of the TCO

$$R = 8(\Omega / square) * \frac{2.5(cm)}{4(cm)} = 5(\Omega)$$
$$R = 15(\Omega / square) * \frac{2.5(cm)}{4(cm)} = 9.375(\Omega)$$

Sheet resistance influence

$$\Delta V = RI = \left[\frac{\rho W}{dL}\right] \left[J \cdot L \cdot W\right] = J \cdot W^2 \cdot R_{square}$$

CHOSE

Example (J=10 mA/cm2, $R_{square} = 8 \Omega/sq$): 1) Small area cell (0.5cm x 0.5 cm) = $\Delta V=0.02V$ 2) Large area cell (10 cm x 10 cm) => $\Delta V = 8 V$ >> V_{oc} !!

W and Z schemes

Strutture dei moduli

Optimized W module

	N total	Mean	Upper 95%	Minimum	Maximum
Isc [mA]	19	112	115	100	124
Voc [V]	19	5.79	5.83	5.6	5.97
FF [%]	19	53	54.3	48	59
Eff [%]	19	2.9	3	2.9	3.3
Pma× [mW]	19	347	358	317	383

Z module

CHOSE

	N total	Mean	Upper 95%	Minimum	Maximum
Isc [mA]	16	236.275	243.537	210	252
Voc [V]	16	4.12625	4.16331	3.98	4.2
FF [%]	16	52.3625	54.13557	43.18	56.96
Eff [%]	16	5.0125	5.2509	3.59	5.49
Pma× [mW]	16	511.1875	535.50473	366	560

- ✓ Optimized and separated processes for WE and CE substrates
- ✓ High Voltage, Low Current
- X Vertical interconnections resistance decreases FF
- X Sealing more complex
- X Lower aperture ratio
- X Metal-Electrolyte corrosion

Parallel module

CHOSE

✓ No vertical interconnection✓ Simpler processes

X Low voltage Output X Metal-Electrolyte corrosion

	N total	Mean	Upper 95%	Minimum	Maximum
Pmax [mW]	18	461.25	471.9	426.825	507.93
Eff	18	4.31	4.419	4	4.75

From Modules to Panels

Modules Assembly, bus bar connections

Strings

Panel assembly

82cm (78cm)

Final panel (August 2009)

Panel v2: April 2010

Outdoor measurements

Outdoor PV Test and meteorological station

Main Characteristics:

- Meteorological station with also direct/indirect light intensity meas.
- up to 6 panel contemporary measurement with also DSC cell meas.
- 2 rotation axis
- Solar spectra measurement

CHOSE

Outdoor measurements

CHOSE

Outdoor Module test – Clear day

Outdoor Module test – Cloudy day

Angular dependence

Build integrated PV

Compared to traditional photovoltaics, DSC has the following differentiation advantages:

Low dependence on angle of light Stable operating voltage in all light conditions Natural colours Optional transparency Aesthetically pleasing Manufactured as a building product Provides additional functionality for energy efficiency

Building Integration of Photovoltaics is quite convenient for DSC technology

Facade DSC photovoltaic façade glass can be manufactured on volume production with low impact on a typical glass façade.

Silicon based PV glass Façade has 50-70 Wp/sqm quite comparable with DSC !!!!!

A continuous Glass Façade WITHOUT PV costs 1000 euro/sqm

Applications (Sony)

Acknowledgments

- UniFerrara (Bignozzi team)
- UniRoma 1 (Decker team)
- UniTorino (Viscardi-Barolo team)
- DYESOL

www.chose.it

REGIONE LAZIO

- A. Reale
- T. M. Brown
- C. Bettiol
- F. Giannini
- A. Spena
- C. Cornaro
- E. Petrolati
- R. Riccitelli
- S. Penna
- V. Mirruzzo
- M. Liberatore
- A. Gagliardi
- A. Lembo (Dyesol)
- T. Denaro (Dyesol)

And many PhDs (Giordano, Vesce, Mastroianni, Gentilini etc.)

CHOSE

Conclusions

- DSC represents a new way for silicon free photovoltaics. Large tunability, easy manufacture, low plant and material costs.
- Large area devices is not trivial and many issues are still open
- Industrialization is very close
- Scale up of the materials with price reduction is request.
- Many applications. DSC is well suited for building glass envelopes

