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What are scaling laws, why are they important in geodynamics, and what 
problems in geophysics make them attractive.
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Fluid flow

1. Show that A ·B ∧C = A ∧B ·C = −C ·B ∧A.

2. Use the very useful identity (you are also encouraged to try deriving this identity) called the εδ identity

εijkεimn = δjmδkn − δjnδkm

to show that
(a ∧ b) ∧ c = (a · c)b− (b · c)a.

Here we use ε to denote the permutation symbol and δ is the Kronecker delta.

3. When we build models of river systems and ships, care is usually taken to scale the Froude number

Fr = U/
√
gl,

where l is the length scale and g is gravity (this is the ratio of velocity to the speed of shallow water waves.

Suppose we would like to study the motion of a boat (length 100 m, speed 10 m/s) in the lab. Due to
budget and space constraints, we can only make a model boat that is 1 m long.

a) How fast does the model boat have to move for Froude number scaling to hold?

b) What can we do if we want the Reynolds number to also be the same for the real boat and the model?

4. Show that the continuity equation can be written as
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V

DV

Dt
= ∇ · u

where V is volume. Recall the chain rule. Explain why ∇ · u = 0 if the fluid is incompressible.

5. Consider two equal-size spherical particles in a very viscous fluid (e.g. a magma) sinking because they
are more dense than the surrounding fluid. Assuming the Reynolds number is � 1, what can you say
about the change in their relative orientation and separation distance? Why?

6. If the eruption rate of the Columbia River flood basalts was 1 km3/day, what is the radius of the
conduit (here assumed to be cylindrical and smooth) that transported the magma? Assume a viscosity
of 100 Pa s, a density difference between the magma and surrounding rocks of 300 kg/m3, and a magma
density of 2600 kg/m3; also assume that only the density difference between the magma and surrounding
rocks drives the flow (i.e., the pressure gradient is Δρg).

Given the assumptions made above, would the flow of the magma through the conduit be laminar or
turbulent?
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7. Derive an expression for the spreading rate of a viscous fluid (Reynolds numbers much less than 1)
over a flat surface by scaling analysis. You should find that for a constant volume of fluid, the radius R
increases as time1/8.

Perform an experiment to verify the t1/8 spreading rate. To do this, you will need to measure the radius
of a spreading blob of very viscous fluid (e.g., honey, syrup) as a function of time. By plotting your data
on a log-log scale you should be able to determine the power law relationship (if there is one). You should
try to let your experiment run for at least one day.

If your experimental data do not agree with the theory, describe several possible reasons for the disagree-
ment.

Derive a similar expression for a two-dimensional flow in the same limit (low Re, flow due only to buoy-
ancy forces, constant volume of fluid).

8. Two parallel plane, circular disks of radii R lie one above the other. They are separated by a distance
H. The space between them is filled with an incompressible Newtonian fluid. One disk approaches the
other at constant velocity V , displacing the fluid. The pressure at the edge of the upper disk is atmo-
spheric.

a) Under what conditions are the lubrication equations (Stokes equations) valid? What is the appropriate
choice for the characteristic pressure in the lubrication approximation?

b) What is the velocity as a function of radius r?

c) What is the dynamic pressure distribution?

d) Show that the hydrodynamic force resisting motion is

F =
3πμR4

2H3

dH

dt

Hopefully this solution helps you understand why separating microscope slides by pulling them apart
(when there is water in between the slides) is not easy.

Many adhesion processes rely on lubrication theory. If gaps are thin (and especially if the fluid is very
viscous) then large forces required to separate the surfaces at reasonable rates. Aparently, some insects
use lubrication theory to help their feet stick to smooth surfaces and as result they can even walk upside
down.
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Heat transfer by conduction

1. Consider two horizontal layers, layer A lying on top of layer B. The thermal conductivity of layers A
and B are 2 and 5 W K−1m−1, respectively. Layer A has a thickness of 30 m and layer B a thickness of
70 m. The temperature at the bottom of layer B is 50 degrees C and the surface temperature is 0 degrees C.

What is the surface heat flow and the temperature between layers A and B?

2. Using the relation τ = l2/κ and assuming κ = 1× 10−6 m2/s, determine the characteristic conduction
time scales for conductive cooling of the Earth, Mars, Enceladus (the moon that is erupting water ice),
and Mars’ moon Phobos.

What are the implications of these time scales for the interiors of the planets?

3. If the mean surface heat flow on the Earth (80 mW/m2) is attributed entirely to the cooling of the
Earth, what is the mean rate of cooling (degrees/million years)? Assume the mean specific heat is 1.2
kJ kg−1 K−1. This problem involves only performing an energy balance.

4. Calculate the maximum depth to which frost can penetrate at a latitude where the annual surface tem-
perature varies sinusoidally between -10 degrees C and 20 degrees C (water pipes should be buried below
this depth). Assume that the water content of the ground is sufficiently small that the latent heat associ-
ated with freezing and thawing can be ignored. Assume the thermal diffusivity of the soil is 1×10−6 m2/s.

5. A body of water at 0 degrees C is subjected to a constant surface temperature of -10 degrees C for
10 days. How thick is the layer of ice that develops? Assume the latent heat is 300 kJ/kg, the thermal
conductivity is 2 W K−1 m−1, the specific heat is 4 kJ kg−1 K−1, and the density is 1000 kg/m3.

6. Pseudotachylites are rocks found in fault zones that appear to have been melted (see Kanamori,
Anderson, and Heaton (1998) Frictional melting during the rupture of the 1994 Bolivian earthquake,
Science, 279, 839-842 for a short discussion).

Assume a constant sliding speed u on a fault during an earthquake that results in friction heat production
uσ where σ is the stress on the fault (what are the units of heat production here?). If u = 20 m/s, the
total displacement is 5 m, σ = 20 MPa, the thermal conductivity is 2 W K−1 m−1 and the thermal
diffusivity is 1 × 10−6 m2/s, what is the temperature increase on the fault (assuming the rocks do not
melt)? Will the temperature high enough to melt rocks?
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