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Stokes’s Theory:
sphere sinking
through a viscous
fluid

Gravity pulls it down, but
viscous drag prevents it
from accelerating.



’ Coordinate
system

Spherical coordinates,
centered at the sphere,
so that the surrounding
F fluid, at large distances,
moves at:

ii(r =)=V =Vcosr ~Vsin99



Basic equations

Vp=nV’i=-nVxw, V- 1i=0
Here, p is the perturbation to pressure due to
flow; 1 is viscosity, U is velocity; and @ is vorticity.

W=V XU
The first equation above expresses a balance of
forces (Newton’s second law), for the case of very
high viscosity, so that accelerations are negligible.

The second equation states that mass is
conserved, and the fluid is incompressible.



Simplified equations
Vp=nV’i=-nVxw, V-i=0

Taking the divergence of the first of these, and
using the second gives.

Vp=0
Taking the curl of the first gives:
Vo =0

Moreover, for this case, we may write components
of velocity in terms of a stream function.



Stream function in spherical
coordinates

1 oy 1 oy

U, = 2 - , Uy =~ .
r-sin® 09 rsin® or

Moreover, for a fluid with constant viscosity and
density, the stream function obeys

Viy =0



The equation for pressure

Vip=0
1 d( ,0 | . J 1 9
—2—(r2—p)+ — (sinﬁ—p)+ — l;
r-or\ or) r°sindJdv 0¥) r7sin” ¥ do

Symmetry requires that p depend on only r and %

J (r &_p) L d (smﬁﬁp) 0
or dr ) sin® 99 AV

=0



The solution for pressure

2], 1o,
or Jr] sint o oAV

To match the condition that p vanish at large
distances and have opposite signs in front of and

behind the sphere, the solution takes a form like:

nV cos
P =C 2

r
As we shall see, the constant C must have units
of distance.




The solution for vorticity

V cost)
From Vp=-nVxw, and p = C77 e
r
. CVxF
Thus, o = 3
r

By symmetry, again, there can be only one
component of vorticity:
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Check Vp = -1V x &, p = CnVcosﬁ
r’
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An equation for the stream function
With

" ~1druy, 1du,  CVsind
And " r o ro9
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r-sint d% rsintt or
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The solution for the stream function

With CV sin® 9

r

&2w+sim9 (9( 1 azp)
or*  r* 99\sin9 99

the solution must be of the form:

Y = Vsin® 9f(r)
Hence
azf 2f C
2> T 2 =

or r r

Thus,
1o f(r)=%(?r+é+Br2
r



Boundary conditions at large r

With 1y 1 oy
l/lr = 95 . ’ uﬁ = = .
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As r —> 00,

ii(r =)=V =Vcosr ~V sindd

Thus, B=1/2.



Boundary conditions atr =R

With
( 2A Q)VcosﬁA (1 A )Vsinﬁ&

<
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atr=R, u=0. Thus, C=-JR A==

which give 4
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Viscous drag on the sphere

To calculate the drag on the sphere, we must
evaluate the various components of stress on the
sphere, and this requires evaluating components
of strain rate at r = R.

; ou, . 1§uﬁ u. . _Iﬁ(u) 1 du,
r

— . E . E —
o T, &19“ r 2 o 2r 90
We must then sum the components of these

stresses parallel the direction that the sphere
moves.



Evaluation of the strain rates
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It turns out that two of these vanish on the sphere
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Evaluation of the viscous drag

The component of 7., that is parallel to velocity of
the sphere is 3V

T .sin® =2né . sin® = ———sin” Y
ri TI ro 2R

We must also consider the pressure, and its
component parallel to velocity of the sphere:

3nV costt 3nVv
pcostt = — TIZZOS cosﬂ=—Lcos )

Thus, the drag (stress) is constant over the sphere
(a remarkable result), and the drag force is

3V
F, =2 47R* = —67RNV
2R



Downward speed of sphere

If the sphere sinks because of gravity acting on

it, then that force is
4 s
F,=mg = gnR Apg

It must equal the drag force. Thus,

4
EER3Apg = F, =6aRnV

and 2R’Apg
V —_—
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