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1 Introduction

The mantle of the Earth was once entirely molten: a magma ocean. Over time, it solidified into
the solid mantle that we know and love. However, plate-boundary volcanos are evidence of the
fact that the mantle continues to melt. Why does this occur? Because the solid mantle convects,
bring hotter mantle toward the surface, and colder mantle to depth. But this only explains
the existence of melting. How does convection produce the spatial and temporal patterns of
volcanism that we observe? How does it lead to the compositions of mid-ocean ridge basalts
(MORB), ocean-island basalts (OIB), and subduction-zone lavas? What effect does melting
have on the residual mantle, and how is this residual mantle distributed in space? What are
the dynamic consequences of magmatism on mantle convection and plate tectonics? How has
the extraction of melt affected the composition of the mantle (and the crust) over geological
time? All of these questions go beyond the basic theory of mantle convection and require that
we consider the physics and chemistry of magmatism.

In pursuit of this goal, we extend the equations governing mantle convection to include
magmatism. In these lectures, we’ll derive a set of equations that reduce to mantle convection
(reviewed below) in the limit of no melting. In general, they also track the mechanics, energetics,
and basic petrology of magmatism. As we shall see, they predict surprising behaviours that are
not captured by the equations of mantle convection, and they introduce new length and time-
scales to the problem at hand. They are physically complex, and challenging to solve, but this
only adds to the excitement of their study. Consideration of the key scaling laws associated
with the equations of coupled magma/mantle dynamics will be an essential but insufficient
component of their analysis.

In the following notes, we move through the derivation of the governing equations, building
complexity in increments, with interspersed studies of the scaling and solutions of the equations.
This should build your intuition for the fluid mechanics and thermodynamics of of the system,
which is essential for the interpretation of solutions to the full system of equations in the context
of tectonic-scale models of plate-boundaries. The focus is on theory and models; observations
are mentioned to motivate and validate models, but are otherwise not discussed in detail.
References to the literature are kept to a minimum within the main body of the notes, and are
provided in concentrated bursts at the end of each section. We begin with a very brief review
of mantle convection.

1.1 Review of mantle convection

The simplest model for large-scale convection of the mantle is governed by a system of equations
that you’ve already studied, and that are repeated here for reference:

∇P = ∇· η
(
∇v + ∇vT

)
+ ρg, (1)

∇· v = 0, (2)

ρcP

(
∂T

∂t
+ ∇· vT

)
= ∇· k∇T + ρH, (3)

plus conservation of composition, constitutive laws, etc.

The first of these is a statement of force-balance, known as Stokes’ equation. It states that
pressure gradients are balanced by viscous stresses and body forces. P is dynamic pressure,
η is viscosity, v is the flow velocity of the mantle, ρ is the density, cP is specific heat, T is
temperature, k is thermal conductivity, and H is the rate of heat production per unit mass.
The primary, dependent variables are P,v, and T , while η, ρ, cP , k, and H are parameters that
may vary with the independent (space, time) or the dependent variables.
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With a choice of coordinate system, and initial and boundary conditions, these equations
can be solved, and the results can be interpreted in terms of the behaviour of the convecting
mantle over the history of the Earth. You have seen this in earlier lectures, and we will not
dwell on it here. The obvious deficiency of this model is that it does not account for the transfer
of mass from the solid phase to the liquid phase (i.e. magma), and it does not account for the
segregation of that liquid, and its ascent to magma chambers beneath volcanos. But these are
essential features of the Earth system that we’d like to model!

2 Governing equations: mechanics

The minimal mechanical model for a two-phase system (liquid and solid) must be comprised of
statements of conservation of mass and momentum for each of the two phases. Many authors
have used different approaches to derive these equations, but the end results have been nearly
identical. Here we loosely follow the approach taken by McKenzie [1984], noting modifications
where relevant.

Our derivation will be motivated by the understanding that magma is distributed in a
connected network of narrow pores between solid grains, as shown in Figure 1a. This is a
sensible assumption because we know that the mantle is polymineralic, and that some minerals
melt more easily than others. Magma is produced by partial melting of mantle rock, and on
some length-scale that melting is volumetrically uniform. This length-scale must be much larger
than the grain scale, but much smaller than the scale of variability of mantle properties such
as temperature and bulk composition.

2.1 The representative volume element

We pose our derivation in terms of the contents of a representative volume element (RVE,
Figure 1b), that contains a physical mixture of the two phases. Since we will be averaging
physical properties over this element, we require that it contains a sufficient number of mantle
grains that the average is “representative,” i.e. not dependent on the details of which grains
or pores happen to be within it. We also require that the RVE be small enough that mantle
properties vary linearly (at most) across it.

(a) (b)

Figure 1: (a) 3-dimensional representation of the results of X-ray microtomography of an aggregate
of olivine grains (transparent) and their melt-filled pore-space (gold) at a porosity of 20%. Note
that the melt on grain triple-junctions forms an interconnected network of pores. (By Wenlu Zhu
at the University of Maryland.) (b) Schematic representation of a representative volume element
with magma Q = 1 and matrix Q = 0 represented by black and white sub-volumes, respectively.
Figure from Bercovici et al. [2001a].
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For some scalar property ψ within the RVE, we can write a general conservation equation
for that scalar as follows:

d

dt

∫

RVE

ψ dV = −
∫

∂RVE

ψv · dS +

∫

RVE

s dV. (4)

In this equation,
∫

RVE
dV represents an integration over the volume of the RVE, and

∫
∂RVE

dS
represents an integration over it’s boundary, where dS is an outward-pointing normal vector of
infinitesimal length. The first term in the equation is the rate of change of the amount of ψ in
the RVE. It is equal to the rate at which ψ enters the RVE by advection, and the rate at which
ψ is produced in the RVE by any possible sources; v is the material flow that carries ψ and s
is the volumetric production rate of ψ.

Since we allow for only two phases, magma (liquid) and mantle (solid), the RVE must contain
only those two phases, as shown in Figure 1b. We therefore define an indicator function Q(x),
which identifies the liquid and the solid phases within the RVE,

Q(x) =

{
1 if there is liquid at x,

0 if there is solid at x.
(5)

This allows us to rigorously define the porosity φ as the volume fraction of the liquid phase
within the RVE:

φ =
1

V

∫

RVE

Q(x) dV. (6)

This means that 1− φ is the fraction of the solid phase within the RVE. The two must sum to
unity.

2.2 Conservation of mass

Let’s label the density of the liquid phase ρf (subscript f for fluid) and the density of the
solid phase ρm (subscript m for matrix), and assume that these quantities may be considered
constant over the RVE. This means that we can write the liquid mass as ρfφ, and that the
conservation equation for liquid mass is then written as

d

dt

∫

RVE

ρfφ dV = −
∫

∂RVE

ρfφvf · dS +

∫

RVE

Γ dV, (7)

where Γ is the melting rate, with units of mass/volume/time. Rearranging and using Gauss’
theorem, we can write

∫

RVE

(
∂(ρfφ)

∂t
+ ∇· ρfφvf

)
dV =

∫

RVE

Γ dV,

and since the volume of the RVE is arbitrary (once we have made the appropriate continuum
assumptions), we can discard the integrals and take the relationship to hold at any point in the
continuum,

∂ρfφ

∂t
+ ∇· ρfφvf = Γ. (8)

This equation states that changes in the fluid mass at a point are caused by the divergence of
the fluid flux and the melting rate, at that point. Following an identical logic, the conservation
of mass can be written

∂ρm(1− φ)

∂t
+ ∇· ρm(1− φ)vm = −Γ. (9)
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Note that the RHS of the solid mass conservation differs from the fluid mass conservation
by only a negative sign. Mass is transferred from the solid phase to the fluid phase during
melting. Any physically consistent model of magma/mantle interaction must simultaneously
satisfy these conservation of mass equations.

2.3 Conservation of momentum

Our fluid mechanical models requires statements of conservation of momentum which, as was
the case with mantle convection, become statements of force balance, because we can neglect
inertial terms (the Reynolds number is of order 10−8 or smaller).

Unlike mantle convection, however, there are two phases in this problem that can interact
via an interphase force. We define the force I as the force exerted by the fluid phase on the
matrix phase. By Newton’s third law, the force of the matrix phase on the fluid phase is −I.
Using this definition, we can write a force balance equation for the matrix phase within our
RVE as

d

dt

∫

RVE

ρm(1− φ)vm dV +

∫

∂RVE

ρm(1− φ)vm(1− φ)vm · dS =
∫

RVE

ρm(1− φ)g dV +

∫

RVE

I dV +

∫

∂RVE

(1− φ)σm · dS, (10)

where g is the gravity vector and σm is the stress tensor within the solid phase. Neglecting
the inertial terms on the LHS, applying Gauss’ theorem, dropping integrals, and switching to
indicial notation gives

−(1− φ)ρmgδi3 + Ii +
∂

∂xj
[(1− φ)σmij ] = 0, (11)

where i is an index with values of 1, 2, and 3; δij is the Kronecker delta, and the Einstein
summation convention is implied. We have taken the z-direction to be parallel to the gravity
vector, and pointing in the opposite direction such that g · k̂ = −g.

Equation (11) is actually three equations, one for each Cartesian direction. For example,
when i = 1 we are considering the x-direction; δ13 = 0 so the first term drops out; the repeated
j in the last term expands to a summation and we have

I1 +
∂

∂x1

[(1− φ)σm11] +
∂

∂x2

[(1− φ)σm12] +
∂

∂x3

[(1− φ)σm13] = 0.

The equation analogous to (11) for the magma is

−φρfgδi3 − Ii +
∂

∂xj
(φσfij) = 0, (12)

where σfij is the stress tensor within the fluid phase. Note that the interaction force has the
opposite sign from that in the equation for force balance in the solid.

For the force balance equations (11) and (12) to be useful, they must be expressed in terms
of the matrix and magma velocities. To achieve this, we need to provide definitions of the
interphase force and the stress tensors.

The interphase force I must be invariant to changes in inertial reference frame (i.e. it must
be Galilean invariant). A variety of functions satisfy this relationship, but the simplest one is
the relative velocity of the magma with respect to the matrix, vf − vm. Furthermore, it can
be shown that I must include a term due to the pressure in the fluid, to take account for the
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force which arises from a gradient in porosity. Incorporating these arguments, the interphase
force can be written as

I = C1(vf − vm)− Pf∇φ, (13)

where C1 is a constant and Pf is the pressure in the magma. Some authors have included other
terms in this equation (such as forces arising from surface tension), but these are of second-
order importance in most physical contexts, and are not included here for simplicity. Inspired
by Darcy’s law of porous flow, we can choose

C1 = µφ2/K, (14)

where µ is the dynamic viscosity of the magma, and K is the permeability of the mantle
matrix. Both of these can vary as a function of other problem variables; we will consider µ to
be a constant, and K to be a function of porosity.

In deriving stress tensors, we will treat the magma as an incompressible fluid. The usual
form for the stress tensor within an incompressible fluid is

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
. (15)

Since we are averaging over a RVE that contains many magma-filled pores, and since those
pores are oriented randomly between grains, we can assume that this averaging process leads
to self-cancellation of the second-term on the RHS of equation (15) for the magma. We can then
take p = Pf and combine (15) with (13), (14), and (12) to obtain our force balance equation
for the fluid,

φ(vf − vm) = −K
µ

∇(Pf + ρfgz). (16)

When vm = 0, this equation reduces to Darcy’s law. This equation states that segregation of
magma from the mantle matrix is driven by pressure gradients and body forces in the fluid,
and is modulated by permeability and magma viscosity.

The stress within the matrix phase requires a more complicated expression than (15). We
expect that the grains of the matrix can compact to expel magma from the pores, or dilate to
allow magma in. The rate at which this compaction occurs must be related to the difference
in pressure between the matrix and the magma. We can represent the rate of compaction in
terms of a continuum compressibility of the matrix phase with the understanding that when
porosity is zero, the matrix phase must cease to be compressible. Hence we can write

Pf − Pm = ζ∇· vm, (17)

where ζ is a bulk viscosity that quantifies the resistance to compaction and dilation. ζ can be
a function of temperature, porosity, or other problem variables and parameters.

The general form for the stress tensor of a compressible fluid is

σij = −pδij + ζδij
∂vk
∂xk

+ η

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij
∂vk
∂xk

)
. (18)

Substituting p = Pf and v = vm into this equation gives the stress tensor for the matrix,

σmij = −Pfδij + ζδij
∂vmk
∂xk

+ η

(
∂vmi
∂xj

+
∂vmj
∂xi
− 2

3
δij
∂vmk
∂xk

)
. (19)

To see that equation (19) is consistent with (17), we can compute the matrix pressure according
to the formula P = −Tr(σ)/3, where Tr indicates the trace of the tensor. Applying this to
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(19) gives

Pm = −1

3

[
−3Pf + 3ζ

∂vmk
∂xk

+ η

(
2
∂vmi
∂xi
− 2

∂vmk
∂xk

)]
,

= Pf − ζ∇· vm.

This shows that choosing (19) as the stress tensor for the matrix gives the compaction be-
haviour that we expect on physical grounds. It is important to note, however, that the matrix
pressure includes a component of active deformation, and thus is not strictly an equilibrium
(thermodynamic) pressure. Since the pressure difference between fluid and solid is generally
small relative to the lithostatic pressure, this need not concern us. It is also important to note
that this tensor represents stresses on the continuum, and thus cannot be used to compute the
stresses within any single grain.

Combining equations (11), (13), (14), and (19) gives a force balance equation for the matrix
in terms of flow velocities,

− (1− φ)ρmgδi3 +
µφ2

K
(vfi − vmi )− Pf

∂φ

∂xi

+
∂

∂xi

{
(1− φ)

[
−Pfδij + ζδij

∂vmk
∂xk

+ η

(
∂vmi
∂xj

+
∂vmj
∂xi
− 2

3
δij
∂vmk
∂xk

)]}
= 0.

This equation can be simplified by substituting (16), expanding and combining pressure terms,
and absorbing a factor of (1− φ) into ζ and η to give

∇Pf = ∇· η
(
∇vm + ∇vTm

)
+ ∇

[(
ζ − 2

3
η

)
∇· vm

]
− ρgk̂, (20)

where ρ = ρfφ + ρm(1− φ) is the phase-averaged density. This equation states that gradients
in magma pressure are balanced by viscous shear stresses in the matrix, viscous compaction
stresses in the matrix, and body forces on the phase-averaged density. It is closely related to
Stokes’ equation, except that being for a compressible (actually compactible) fluid, it contains
compaction stresses.

For constant viscosity η and ζ, it can be shown that equation (20) reduces to

∇Pf = −η∇×∇× vm +

(
ζ +

4

3
η

)
∇(∇· vm)− ρgk̂, (21)

using the vector identity
∇2V = ∇(∇·V)−∇×∇×V,

for any vector V.

2.4 The Boussinesq approximation and a more convenient form

Equations (8), (9), (16), and (20) are a set of 2 + 2ND equations in the same number of
unknowns (ND is the number of spatial dimensions). The principle unknowns are φ, Pf , vm,
and vf . The equations are coupled (through the fluid pressure and the porosity) and non-linear
(the permeability is typically taken as K ∝ φn for small values of φ). They contain secondary
variables ρm, ρf , Γ, µ, K, ζ, and η that must be specified using constitutive equations. It
should be noted that equation (16) is an algebraic expression for vf in terms of the other
primary variables. With a solution for vm, Pf , and φ, equation (16) can be immediately
applied to determine vf .



9

To put the governing equations into a form that is amenable to solution using analytical or
numerical methods, it is helpful to make some simplifications. The first of these is the Boussi-
nesq approximation, also used for mantle convection, which states that the phase densities may
be approximated as being constant, except in buoyancy terms, where they are multiplied by g.
We can also decompose the magma pressure into three parts as follows

Pf = PL + P + P, (22)

where PL = −ρmgz is the lithostatic pressure (for z positive upward),

P = (ζ − 2η/3)∇· vm (23)

is the compaction pressure, and P is the remaining, “dynamic” pressure. Substituting equation
(22) and (23) into (20) gives

∇P = ∇· η
(
∇vm + ∇vTm

)
+ φ∆ρgk̂, (24)

where ∆ρ = ρm− ρf . This is the Stokes’ equation and governs the large-scale shear flow of the
mantle matrix.

To derive an equation that governs the small-scale compaction flow of the mantle matrix
we apply the Boussinesq approximation and take the sum of equations (8) and (9) to obtain

∇· φ(vf − vm) + ∇· vm =
∆ρ

ρmρf
Γ. (25)

Then we take the divergence of (16) and substitute (25), (22), and (23) to obtain

−∇· K
µ

∇P +
P
ξ

= ∇· K
µ

∇(P −∆ρgz) +
∆ρ

ρmρf
Γ, (26)

where ξ = ζ − 2η/3 is the compaction viscosity.

2.5 Relevant limits

There are two limits to these equations that help us to understand their nature. First, consider
the limit of no porosity φ = 0 and no melting Γ = 0. In that case, the conservation of mass for
the solid (9) becomes the familiar continuity equation for an incompressible fluid

∂ρm
∂t

+ ∇· ρmvm = 0;

the conservation of mass and momentum equations for the liquid phase disappear, because
there is no liquid phase present, and the conservation of momentum equation for the solid
phase becomes

∇Pm = ∇· η
(
∇vm + ∇vTm

)
− ρmk̂.

With the Boussinesq assumption, this system of two equations is exactly what we have used as
a model for mantle convection (equations (1) and (2)). So in the limit of zero porosity, coupled
magma/mantle dynamics reduces to just mantle dynamics!

The other limit to consider is when the mantle is partially molten, but entirely rigid, with
porosity that is constant in space and time (and hence no melting). Then vm = 0, Γ = 0, and
the conservation of mass equations become

∂ρf
∂t

+ ∇· ρfvf = 0;
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The conservation of mass and momentum equations for the solid phase are solved trivally if the
solid density is constant, and the conservation of momentum for the liquid is

φvf = −K
µ

(
∇Pf + ρfgk̂

)
.

This is simply porous flow in a uniform, saturated medium!

2.6 Constitutive equations

To close the system of mechanical equations, we require constitutive equations for ρm, ρf , µ,
K, Γ, ζ, and η. Depending on the problem that we wish to solve, or the physics that we
wish to capture with our model, these relations can take a variety of forms. In this section,
we encounter a typical set of choices. As with mantle convection, however, some interesting
research lies in generalising these constitutive relations to capture a more detailed model of the
physical system.

In most applications of magma dynamics, the Boussinesq approximation is extended to
assume that the phase densities are both equal to a mean density ρ, and that the density
difference ∆ρ is neglected, except in buoyancy terms, where it is considered to be constant.
This means that the last term in the compaction equation, representing volume change due to
melting, is neglected.

Furthermore, all published works on magma dynamics take the magma viscosity µ to be a
constant, although in reality it must vary with temperature and composition, at the least. We
will consider µ a constant throughout these notes.

Variation of permeability with porosity is an essential aspect of magma dynamics. The ease
of segregation must depend on the mean pore-size, and this must vary with several factors. In
the limit of small porosity (φ� 1), the permeability is typically written as

K(φ) =
d2

c
φn, (27)

where d is the grain size, and c and n are dimensionless constants that depend on the micro-
scopic geometry of grains and pores. Inspection of equation (16) indicates that to ensure that
the segregation velocity increases with increasing porosity, we require that n > 1. A simple
geometric model of flow through tubes at the edges of a lattice of cubic grains predicts that
n = 2; flow in sheets parallel to the faces of cubic grains predicts n = 3; experimental studies
have typically obtained values of n between these limits. Since the mechanical models we have
developed so far contain no rule for the evolution of grain-size, we will prescribe it as a constant
below.

The melting rate Γ is another key parameter in the equations; underlying it is the entire
field of mantle petrology, which includes thermodynamic theories of enormous complexity (and
that is just to describe the equilibrium thermodynamics). For the applications considered here,
we will look for simple parameterisations of the petrology that capture the essential features1,
but neglect most of the details. For example, to describe adiabatic melting, we could prescribe
a closure of the form

Γ = −(vm · ĝ)
dF

dz

∣∣∣∣
S

, (28)

where F is the melt fraction, ĝ is a unit vector pointing in the direction of gravity, and dF/dz|S
is the adiabatic productivity of decompression melting. As it turns out, this is not a bad

1We will definite “essential” on a case-by-case basis, depending on the physics and phenomena that we seek
to model.
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approximation for decompression melting, but it misses other forms of melting, as well as any
melting or freezing due to changes in temperature. It is sometimes useful to take Γ = 0 and
examine the behaviour of solutions with a fixed total porosity.

The bulk ζ and shear η viscosities of the two-phase aggregate are also essential parameters
and play an important role in solutions of various problems. In general, they vary with other
variables including temperature, composition, porosity, and strain-rate. Much can be learned
about the governing equations by assuming that the viscosities are constant, however. In the
notes below, we will introduce the form of the closure relations for bulk and shear viscosity as
we develop applications and solutions of the governing equations.

2.7 Non-dimensionalisation and scaling

The last step, before we begin to examine solutions to the equations of mass and momentum
conservation, is to choose appropriate scales to non-dimensionalise them. There are a variety
of approaches to this task, and different physical problems might motivate us to take choose
among these. Here we consider a standard choice that brings out some interesting aspects of
the physics.

We have several aims in non-dimensionalising the equations. The first is to reduce the
number of independent parameters to the minimum set, so that we can clearly see the controls
on the solution; non-dimensionalising the equations will result in a set of non-dimensional
parameters (such as the Reynolds number). The second aim is to better understand what
terms in the equations (and hence what physics) is important in different physical contexts.
This is similar to searching for scaling laws: we seek information about what terms represent the
dominant balance in solutions to the equations. The third aim is to renormalise the variables
in the problem so that they are all of order unity. This aids in developing accurate numerical
solvers for the governing equations.

To non-dimensionalise, we take the approach of guessing approximate scales for some vari-
ables, based on our physical intuition and/or published observations, and then using these
guesses to derive characteristic scales for other variables. To start, let’s assume a characteristic
value for the porosity of a partially molten region of the mantle, φ0 � 1. We can renormalise
the porosity2

φ = φ0φ
′, (29)

where φ′ is a rescaled porosity variable that equals one when φ = φ0. This motivates us to scale
the permeability as

K =
d2φn0
c

φ′n = K0φ
′n, (30)

where K0 = d2φn0/c is the characteristic permeability. Examining equation (16) and guessing
that vm and Pf are small relative to vf and ∆ρg, we can guess that magmatic segregation is
mainly driven by the body-force difference between the magma and the solid, and propose a
scaling for velocity as follows

vf =
K0∆ρg

µφ0

v′f = w0v
′
f , (31)

where v′f is our rescaled, dimensionless fluid velocity. The matrix velocity will scale with the
product φ0w0 since we expect it to be much smaller than the magmatic velocity.

It is clear that we also need to choose a characteristic length-scale and time-scale for our
non-dimensionalisation. Instead of guessing at an appropriate length-scale, we’ll represent it
as δ and determine a value for δ later. The characteristic time-scale τ can then be taken as

2Since the porosity is already dimensionless, this is not “non-dimensionalisation” per se, but has the same
intent and effect.
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the time for magma travelling at speed w0 to travel a distance δ. The characteristic scale for
viscosity can be taken as ζ0 + 4η0/3, motivated by equation (21). Lacking good information
on the melting rate, we’ll scale it by Γ0. The pressure will scale with P0 = ∆ρgδ, which is
motivated by our choice of buoyancy as the key driving force for magmatic segregation. To
summarise, we have agreed that

[φ] ∼ φ0, [K] ∼ K0, [vf ,vm] ∼ w0, [x] ∼ δ, (32a)

[t] ∼ δ/w0, [P,P ] ∼ ∆ρgδ, [η, ζ, ξ] ∼ ζ0 +
4

3
η0 [Γ] ∼ Γ0. (32b)

Each of these states that the quantity in brackets has the characteristic scale given on the RHS.
Applying the extension of the Boussinesq approximation to equation (26), substituting

appropriate scales from (32), and immediately dropping primes from non-dimensional variables
gives

−∇· (φn∇P) +
δ2µ

(ζ0 + 4η0/3)K0

P
ξ

= ∇·
[
φn(∇P − k̂)

]
, (33)

where we can immediately recognise the dimensionless group δ2µ/[(ζ0+4η0/3)K0]. This suggests
that we choose

δ =

√
(ζ0 + 4η0/3)K0

µ
, (34)

which is a length that we shall call the compaction length. In the notes below, we shall see that
the compaction length is a natural length-scale in the physics of magma/mantle interaction,
and has importance for understanding many phenomena.

In non-dimensional form, the governing equations equations (9), (23), (24), and (26) for
dimensionless variables vm, P , P , and φ can be written

∂φ

∂t
− φ−1

0 ∇· (1− φ0φ)vm = Γ, (35)

∇· vm = φ0
P
ξ
, (36)

−∇· (φn∇P) +
P
ξ

= ∇·
[
φn(∇P − k̂)

]
, (37)

∇P = ∇· η
(
∇vm + ∇vTm

)
+ φ0φk̂. (38)

In non-dimensionalising (35) we have found it convenient to choose Γ0 = ρφ0w0/δ.
Furthermore, to determine the dimensionless magma velocity we have the algebraic relation

φ(vf − vm) = −φn
(
∇P + ∇P − k̂

)
. (39)

This set of dimensionless equations will be the basis for exploring solutions in the following
sections.

Further reading Most of the activity surrounding the derivation of the governing equations
that are considered here took place in the eighties. Turcotte and Ahern [1978] and Ahern and
Turcotte [1979] developed an influential precursor model, but McKenzie [1984] was the first
to write the equations in their current form (and provides references for earlier workers). He
was rapidly followed by Fowler [1985], Ribe [1985b], and Scott and Stevenson [1986]. Each of
these three papers derived very similar systems of equations. A good summary and review of
this early work is given by Stevenson and Scott [1991]. Bercovici et al. [2001a,b] and revisited
the problem within a more general mathematical framework and sought to incorporate more
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physics (including surface-energy driven flow and damage). Another recent treatments of the
derivation by Simpson et al. [2010] used a homogenisation approach and obtained a new term
in the equations that was not previously known, with uncertain meaning. In the limit of a
large viscosity contrast between the matrix and the liquid phases with small porosity, all of
these derivations produce equations that are close or identical to that of McKenzie [1984]. The
pressure decomposition used above was proposed by Katz et al. [2007]. Forces derived from
surface energy have sometimes been included in the stress-balance equations [Ricard et al., 2001,
Hier-Majumder et al., 2006, Takei and Hier-Majumder, 2009], and have a basis in experiments
[Riley and Kohlstedt, 1991].

3 Compaction stresses and magmatic flow

Compaction stresses are a new concept for people familiar with mantle convection. They
are volumetric stresses, and hence are captured by the compaction pressure P , which is the
difference between the fluid pressure and the solid pressure. When the compaction pressure is
positive, the magma is pushing the grains apart; when it is negative, it is pulling the grains
together. The effects of compaction stresses should become more clear through the concepts in
this section.

3.1 The compaction length

To understand the meaning of the compaction length, it is helpful to work in one spatial
dimension, with a simplified set of governing equations. In particular, we neglect melting, body
forces on the mantle matrix, shear deformations (which are not defined in 1D), and all variations
in material properties except permeability. Taking ξ = 1, (1 − φ0φ) ≈ 1, and vm · k̂ = W , we
have the system

Wz/φ0 = − [φ(w −W )]z (40)

− [φnPz]z + P = − [φn]z , (41)

where subscript z indicates differentiation with respect to z; variables w and W represent the
magmatic and matrix upwelling rates, respectively. Equation (40) represents conservation of
mass and is derived by summing the non-dimensional conservation of mass equations; equation
(41) is the compaction equation. To simplify things further, we consider only a single instant
in time, prescribe the distribution of porosity at that time, and seek a solution of equation (41)
for the compaction pressure. The porosity distribution is

φ(z) =

{
1 for −∞ < z ≤ 0

φ1 for 0 < z <∞ , (42)

where φ1 is some dimensionless porosity that not equal to unity. This represents a step-change
in porosity at z = 0 (recall that gravity points in the −z direction). Since the porosity is
piece-wise constant, we can rewrite (41) as

P = φnPzz,

which has the general solution

P(z) = A exp
(
zφ−n/2

)
+B exp

(
−zφ−n/2

)
.
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Compaction pressure

Compaction pressure

Gravity

Figure 2: Compaction pressure response to a step-change in porosity. Note that units of the x-axis
are compaction lengths. (a) Negative step-change leads to a decreasing magmatic flux in z and to
a positive compaction pressure, which causes the porosity to grow at the interface. (b) Positive
step-change leads to an increasing magmatic flux in z and a negative compaction pressure, which
causes the porosity to shrink at the interface. Adapted from Spiegelman [1993b].

At a large distance from z = 0 we expect the compaction pressure and its derivative to
decay to zero, while at the interface between the two regions, we expect that the compaction
pressure P is continuous. We have

P = 0, z → ±∞, (43a)

Pz = 0, z → ±∞, (43b)

[P ]0+
0− = 0, z = 0, (43c)

Applying these conditions allows us to determine the particular solution as

P(z) =

{
Pmax exp

(
−zφ−n/21

)
, z > 0,

Pmax exp (z) , z < 0.
(44)

To compute the maximum compaction rate, we recall that P = Wz/φ0 and then integrate
(40) over the real line to obtain

∫ ∞

−∞
P dz = −

∫ ∞

−∞

∂

∂z
φ(w −W )dz

= −[φ(w −W )]∞−∞,

= 1− φn1 . (45)

To obtain the last line, we have used Darcy’s law applied at ±∞ where Pz = 0 giving φ(w −
W ) = φn.
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This equation states that the integral of the compaction rate over the whole real line must
be equal to the difference between the incoming and the outgoing magmatic flux. Substituting
(44) into the LHS and performing the integration gives

Pmax =
1− φn1

1 + φ
−n/2
1

.

Solutions for a positive and a negative step-change in porosity are plotted in Figure 2. The
key point here is that the change in porosity causes a disturbance to the compaction pressure,
and that this disturbance decays back to the background compaction pressure on a length-scale
that is approximately equal to the compaction length. On the side of z = 0 where porosity (and
hence permeability) is larger, the compaction length is larger and the pressure-decay occurs
over a greater distance.

Hence we can identify the compaction length as the length-scale over which compaction
pressure transmits information about physical disturbances in the medium. Two disturbances
that are distant by many compaction lengths cannot “feel” each other; two disturbances that
are distant by O(1) compaction length or less will interact through the compaction pressure.
The compaction length is thus an inherent length-scale for variations in compaction pressure
in this system.

3.2 Solitary wave solutions: magmons

How does the porosity step modelled above evolve with time? To investigate this, we require
an additional equation that incorporates the time-dependence. This comes from equation (35),
which we simplify by taking Γ = 0 and φ0 � 1 to obtain

φt = Wz/φ0. (46)

This equation states that the change in time of porosity at a point in z is given by the compaction
rate at that point.

Figure 3 shows the evolution of a downward step in porosity according to a numerical
solution of equations (41) and (46) (the initial porosity-steps have been smoothed for numerical
convergence at t = 0). Three step-sizes are shown, corresponding to φ1 = 0.2, 0.5, 0.8. Panel
b of Figure 3 shows the compaction rate at t = 0 and t = 80. The curve for t = 0 has a
single, positive excursion at the step, showing that the positive compaction pressure is causing
the matrix to dilate there, and porosity to increase, as seen in Figure 2a. With time, this
creates a positive porosity excursion. The trailing edge of this excursion acts as an increasing
porosity step, as modelled in Figure 2b, and experiences a negative compaction rate, leading to
a negative porosity excursion. The process recurses in the −z-direction, giving rise to a train
of magmatic porosity-waves (known as solitary waves, solitons, or magmons). The amplitude
of these waves is controlled by the amplitude of the initial step in porosity; their wavelength is
determined by the compaction length.

Larger step sizes (1−φ1) represent a larger barrier to magmatic ascent, and hence give rise
to magmatic waves of larger amplitude. The train of waves grows in the −z-direction faster for
waves of larger amplitude. Figure 3 also shows that the train of solitary waves propagates in
the +z-direction under the force of buoyancy. The rate of propagation appears to be constant
with time, and increases with φ1 (note the different scales on the z-axes in each column of the
figure).

To better understand the characteristics of magmons, it is helpful to consider a detailed
analysis of a single wave. We therefore seek a travelling-wave solution to the governing equations
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Figure 3: Solitary waves of compaction and porosity arising from three different (smoothed) steps
in porosity, given by the three values of φ1. In all cases we have taken m = 3. (a) Evolution of
porosity. The step disperses into a train of solitary waves. (b) The compaction rate Wz = P plotted
for t = 0 and t = 80. (c) Comparison of the porosity for each porosity step-size at t = 0 and t = 80.
Adapted from Spiegelman [1993b].

φt = P , (47a)

−[φnPz]z + P = −[φn]z (47b)

of the form φ = f(ζ) = f(z − ct). Combining (47a) and (47b) and using

∂

∂t
=

∂

∂ζ

∂ζ

∂t
= −c ∂

∂ζ
,

∂

∂z
=

∂

∂ζ

∂ζ

∂z
=

∂

∂ζ
,

we obtain a third-order equation for f as

c [fnfζζ ]ζ − cfζ = − [fn]ζ . (48)

Integrating once in ζ and using the boundary condition

f = 1 and fζζ = 0 as ζ →∞
gives

cfnfζζ − cf = −fn + 1− c.
Substituting P = −cfζ we find that

Pζ = 1 + (c− 1)f−n − cf 1−n.
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Now we perform a trick in order to obtain an integrable equation for f ; we write the ratio Pζ/fζ
as

dP
df

=
(
− c

P
) [

1 + (c− 1)f−n − cf 1−n] .

This can be rearranged and integrated to give

P2 = − 2c

fn−1

[
fn − n2 − 2n+ c

(n− 1)(n− 2)
fn−1 +

c

n− 2
f +

1− c
n− 1

]
. (49)

Defining A as the maximum porosity of the travelling wave, the dispersion relation (to be
determined) is given by c(A). By requiring that P(A) = 0 we can find that

c(A) =

{
(A− 1)2/[A lnA− (A− 1)] for n = 2

2A+ 1 for n = 3.
(50)

A general solution for n ≥ 3 exists but is more complicated and not particularly relevant for
our purposes.

Figure 4: Porosity (solid) and com-
paction rate (dashed) profiles for n =
3 and various values of A that are
given by the y-intercept. The poros-
ity is symmetric and the compaction
rate is antisymmetric around ζ =
0. The crosses are critical points,
discussed in detail by Spiegelman
[1993b]. Adapted from Spiegelman
[1993b].

The waveform f(ζ) of our solitary travelling wave is given implicitly by integrating fζ =
−P/c as follows:

ζ(f) = −c
∫ f

A

P−1df. (51)

Using equation (49) and choosing n = 3, integration of equation (51) yields

ζ = (A+ 1/2)1/2

[
−2(A− f)1/2 +

1

(A− 1)1/2
ln

(
(A− 1)1/2 − (A− f)1/2

(A− 1)1/2 + (A− f)1/2

)]
. (52)

This is an implicit formula for the profile of a solitary porosity wave that has maximum porosity
A. Profiles for a range of values of A are plotted in Figure 4. We would expect this wave to
propagate over a background porosity without changing shape.
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Further reading The compaction length has been discussed by nearly every author who has
written about the governing equations, but the approach to illustrating its effect that was used
in this section was developed by Spiegelman [1993b].

Nonlinear magmatic waves, a type of solitary wave, were among the early solutions to
the governing equations to receive significant attention. The pioneering work was done by
Richter et al. [1984], Scott and Stevenson [1984], Scott and Stevenson [1986], Barcilon and
Richter [1986], and Barcilon and Lovera [1989]. Spiegelman [1993a,b] extended and clarified
some of the earlier analysis, and added numerical solutions that illuminated a broader set of
problems. Wiggins and Spiegelman [1995] developed three-dimensional numerical solutions. For
the mathematically inclined, Simpson et al. [2007] performed formal analysis of the governing
equations, and proved stuff about existence and uniqueness.

4 Porosity-band emergence under deformation

In the preceding examples, we considered only a one-dimensional system, with no large-scale
matrix deformation, only compaction. Furthermore, although we learned about a behaviour of
the governing equations, we were not able to compare model predictions with natural obser-
vations or the results of laboratory experiments. In this section we consider experiments on
partially molten mantle rocks that are deformed in simple shear at uniform, high pressure and
temperature in the laboratory. The samples have an initially uniform porosity of about 4%;
after sufficient deformation, they are observed to have developed a pattern of porosity as shown
in Figure 5, with high porosity bands (∼10%) oriented at an angle of about 20◦ to the shear
plane, between compacted, low-porosity lenses. The matrix is composed of micron-scale olivine
grains, with chromite added to reduce the background compaction length to approximately the
thickness of the sample. For details of the experiments, see references provided below. Here we
adapt the governing equations of magma dynamics to model these experiments.

Figure 5: Cross-section of a quenched experiment. Vertical extent is 0.5 mm. Arrows show the
imposed simple-shear deformation. Dark bands have a larger fraction of quenched melt; lighter
regions are compacted and contain little melt. The initial composition is 4 vol.% MORB evenly
distributed in the pores of a matrix composed of 80% olivine and 20% chromite. Total shear strain
is γ = 3.4. Vertical black marks are cracks formed during quench of the experiment and should be
ignored. Adapted from Holtzman et al. [2003].

4.1 Governing equations

The system of equations that we need in the present context can be obtained by simplification
and manipulation of the dimensional governing equations. In particular, because the sample
size is so small, the variation in gravitational potential across it is negligible. We can therefore
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discard all buoyancy terms. Also, since there is no conversion of olivine or chromite to melt
in the experiments, we can take Γ = 0. We choose to model the system in two dimensions, as
this is the simplest treatment that allows for formation of melt bands. Accordingly we have
the dimensional system

∂φ

∂t
+ vm ·∇φ = (1− φ)C, (53a)

C = ∇· K
µ

[
∇· η

(
∇vm + ∇vTm

)
+ ∇

(
ζ − 2η

3

)
C
]
, (53b)

0 = ∇×∇· η
(
∇vm + ∇vTm

)
, (53c)

where C = ∇·vm is the compaction rate. The first of this system is an expression of conservation
of mass for the solid phase, and states that changes in porosity are due to advection of porosity
by the matrix flow, and by compaction. The second equation is the compaction equation,
where we have eliminated pressure by substitution of the momentum-balance equation (24);
it states that compaction is driven by viscous shear and volumetric stresses associated. The
third equation is the momenum-balance equation, after the curl-operator has been applied to
eliminate the pressure gradient.

The initial condition for this problem is an idealisation of the experiment: uniform initial
porosity φ0 and uniform initial strain-rate γ̇, such that the initial velocity is given by

vm = γ̇yî, (54)

where î is a unit vector in the x-direction, which is also the shear-plane. This equation states
that to leading order, matrix flow is in the direction of the shear plane, increases with distance
from y = 0, and is divergence-free (hence there is no compaction initially). Since the porosity
is uniform initially, we can also assume uniform initial permeability K0 and uniform initial
viscosity η0 and ζ0. We can consider any deviations from this state to be perturbations to the
initial condition (also called the basic state). We’ll assume that the perturbations are small
relative to the initial state, and hence they will be scaled with a small constant ε. In particular,

φ = φ0 + εφ1 (55a)

C = 0 + εC1 (55b)

vm = vm,0 + εvm,1

= γ̇yî + ε(∇× ψ1k̂ + ∇U1) (55c)

K = K0 + εK1 (55d)

η = η0 + εη1. (55e)

Here we have decomposed the perturbation of the matrix velocity vm,1 into two parts using a
Helmholtz decomposition. By writing it as the sum of the curl of vector potential ψ1 plus the
gradient of a scalar potential U1, we have separated the divergence-free (shear) component and
the shear-free (compaction) component. It is left as an exercise for the reader to confirm this
by showing

∇· (∇× qk̂) = 0 and ∇×∇r = 0 (56)

for all two-dimensional scalar functions q and r.
We’d like to solve for the unknown perturbation φ1, C1, ψ1,U1. We start by substituting

equations (55) into equations (53). We then assume that leading-order terms (those multiplied
by ε0 = 1) balance each other, and that second-order terms (those multiplied by ε2) are very
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small and can be dropped. This leaves only the first-order terms (ε1), and gives us a set of
equations for the perturbations

∂φ1

∂t
+ γ̇y

∂φ1

∂x
= (1− φ0)C1, (57a)

−δ2∇2C1 + C1 = 2γ̇
δ2

(ζ0 + 4η0/3)

∂2η1

∂x∂y
, (57b)

∇2U1 = C1, (57c)

∇2(∇2ψ1) =
γ̇

η0

(
∂2η1

∂x2
− ∂2η1

∂y2

)
, (57d)

where δ = (k0(ζ0 + 4η0/3)/µ)1/2 is the leading-order compaction length. Equation (57a) is a
linearised conservation of mass equation, equation (57b) is the linearised compaction equation,
(57c) is the linearised definition of the perturbation compaction rate, and (57d) is a linearised
version of the momentum balance governing shear-deformation of the matrix. (57b) states that
compaction is driven by simple-shear deformation acting on gradients in the viscosity of the
two-phase aggregate. The mixed derivative ∂2η/(∂x∂y) indicates that weak bands oriented at
45◦ to the shear plane would give the absolute largest driving force for compaction.

Equations (57) can be closed by specifying a constitutive equation for the shear viscosity,
η (the perturbation to the bulk viscosity does not appear in (57) and hence a constitutive
equation for ζ is not required). A basic form for shear viscosity of the two-phase medium can
be written as

η(φ) = η0 exp[−λ(φ− φ0)], (58)

where the constant η0 accommodates the amplitude of the viscosity and the exponential ac-
commodates the weakening of the material with porosity; λ is a positive constant, empirically
determined to be ∼30. As we shall see, this weakening is essential to the formation of high-
porosity bands. The viscosity law can be linearised with a Taylor-series expansion of the
exponential as

η ≈ η0(1− ελφ1). (59)

Equations (57) are non-dimensionalised using

t = γ̇−1t′, x = δx′,

C1 = γ̇C ′1, (ψ1,U1) = γ̇δ2(ψ′1,U ′1).

Substituting these scalings and the equation η1 = −η0λφ1, and dropping primes on dimension-
less variables gives

∂φ1

∂t
+ y

∂φ1

∂x
= (1− φ0)C1, (60a)

−∇2C1 + C1 = −2λξ
∂2φ1

∂x∂y
, (60b)

∇2U1 = C1, (60c)

∇4ψ1 = −λ
(
∂2φ1

∂x2
− ∂2φ1

∂y2

)
. (60d)

We now seek solutions to these equations on an infinite domain, in two different limits.

4.2 Solution for constant viscosity

For a constant viscosity, time-dependent flow, the perturbations C1, ψ1, and U1 are all zero, and
hence there is no perturbation-compaction or perturbation-shear. The perturbation in porosity
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obeys the equation
∂φ1

∂t
+ y

∂φ1

∂x
= 0, (61)

which states that the initial porosity field is advected by the simple-shear flow. This equation
has the solution

φ1(x, y, t) = f(x− yt, y), (62)

where f is an arbitrary function that specifies the initial condition φ1(x, y, 0) = f(x0, y0).
For the analysis in the next section, it is convenient to define the perturbation porosity to
be a plane-wave with initial wave-vector κ0 = κ0

xî + κ0
y ĵ, such that the initial condition is

φ1(x, 0) = exp(iκ · x). This initial condition evolves according to

φ1(x, t) = exp
[
i
(
κ0
x(x− yt) + κ0

yy
)]

= exp(iκ(t) · x), (63)

where
κ(t) = κ0

xî + (κ0
y − κ0

xt)̂j (64)

is a time-dependent wave-vector that rotates with the flow and changes length. A perturbation
oriented like the melt bands in Figure 5 has κ0

y > κ0
x > 0.
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Figure 6: (a) Schematic diagram of simple shear with a single band oriented at an angle θ to
the shear plane, which is indicated by a dashed line. (b) Evolution of the angle of bands that are
passively advected by the simple-shear flow. These lines are called passive advection trajectories.

The angle of a wavefront to the shear plane is given by θ(t) = tan−1[κ0
x/κy(t)] (as shown in

Figure 6a). These trajectories are shown for a variety of initial angles in Figure 6b; note that
simple-shear deformation does not rotate bands uniformly, rather the rotation rate is largest
for bands near 45◦.

4.3 Solution for variable viscosity

When viscosity is allowed to vary with porosity, the bands of higher porosity will be weaker
than the bands of lower porosity. We expect this to lead to growth in the porosity difference
between the two. We also expect that the porosity perturbations will be rotated according the
wave-vector defined in (64). Since the governing equations are linear, we expect exponential
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solutions and write the perturbations as

φ1 = exp [iκ(t) · x + s(t)] , (65a)

C1 = C∗(t) exp [iκ(t) · x + s(t)] , (65b)

U1 = U∗(t) exp [iκ(t) · x + s(t)] , (65c)

ψ1 = ψ∗(t) exp [iκ(t) · x + s(t)] . (65d)

Here s(t) is the growth rate of the perturbations and C∗(t),U∗(t), ψ∗(t) are time-dependent
amplitude coefficients, to be determined. Substitution of equations (65) into (60) followed by
laborious algebraic manipulations gives a set of equations for the time-dependent amplitudes;
only one of these is important for the present discussion

ds

dt
= 2λξ(1− φ0)

κxκy
κ2 + 1

, (66)

where κ2 = κ · κ = |κ|2.
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Figure 7: Normalised growth rate of porosity perturbations, ds/dt. (a) Growth rate for a pertur-
bation oriented at 45◦ to the shear plane, as a function of the squared amplitude of the wave-vector
κ. (b) Growth rate as a function of perturbation angle θ for κ2 � 1.

Equation (66) is an equation for the growth-rate of porosity perturbations. Using κx =
|κ| sin θ, κy = |κ| cos θ, and 2 sin 2θ = sin θ cos θ, we can rewrite it as

ṡ = λξ(1− φ0)
κ2 sin 2θ

κ2 + 1
. (67)

This equation shows two important things. First, if |κ|2 � 1 then the growth rate ṡ is very
small. This corresponds to perturbations with wavelength much greater than the compaction
length. Based on what we know about the compaction length, this makes sense: if the perturba-
tions are spaced widely relative to the compaction length, they do not “feel” each other through
the compaction pressure, and hence there is no segregation flow of magma. For |κ|2 � 1, the
growth rate is ṡ = λξ(1−φ0) sin 2θ, which reveals the second important result: the growth rate
is at a maximum for bands oriented at θ = 45◦. Figure 7 shows both of these relationships in
more detail.

Although we have determined the growth rate of perturbations, we have not really yet
solved the problem, because the perturbations grow and rotate. To capture both effects, we
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Figure 8: Porosity-perturbation ampli-
tude exp[s(t)] as a function of perturba-
tion band angle and time, computed with
(68). The angular distribution of ampli-
tude has been normalised at each time
by the maximum amplitude at that time.
Black lines are passive advection trajec-
tories.

must integrate the growth rate (66) over time,

s(t) = 2λξ(1− φ0)

∫ t

0

κ0
x(κ

0
y − κ0

xτ)

(κ0
x)

2 + (κ0
y + κ0

xτ)2 + 1
dτ,

= λξ(1− φ0) ln

[
κ(0)2 + 1

κ(t)2 + 1

]
, (68)

where we have used τ as a dummy-variable of integration. Amplitude of the perturbation is
then given by

|φ1| = exp[s(t)] =

[
κ(0)2 + 1

κ(t)2 + 1

]λξ(1−φ0)

,

which is plotted in Figure 8 for |κ(0) = 4π.
Figure 8 shows that perturbations at angles greater than 50◦ eventually dominate the sys-

tem, whereas in experiments (Figure 5), bands are typically oriented at about 20◦. While our
model predicts growth of high-porosity bands, it also predicts that they will appear at a high
angle to the shear plane. What might be missing that would correct this? One possibility is
that our viscosity formulation (58) was too simple, in that it neglected non-Newtonian effects.

4.4 Solutions for non-Newtonian viscosity

A viscosity formulation that captures the strain-rate dependence of viscosity is given by

η(φ,vm) = η0e−λ(φ−φ0)ε̇
(1−n)/n
II . (69)

In this equation, ε̇II is the second invariant of the strain-rate tensor, ε̇II =
√
ε̇ij ε̇ij, and n is a

constant the represents the sensitivity of viscosity to changes in stress or strain rate (we reuse
the variable n here to follow convection, but note that this n and the n used in the porosity–
permeability relationship are independent). When n = 1, we return to the Newtonian behaviour
that we used previously, when n > 1, larger stress or strain-rate gives smaller viscosity. The
second invariant of the strain rate tensor can be expressed in terms of the velocity expansion
given in equation (55c). It can then be linearised and introduced into the equations (57) to
obtain an expression for ṡ analogous to (67) that reads

ds

dt
= 2

λ

n
ξ(1− φ0)

κxκyκ
4

(κ2 + 1)
[
κ4 + 1−n

n

(
κ2
x − κ2

y

)2
]

+ 41−n
n
ξκ2

xκ
2
yκ

2
, (70)
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which reduces to equation (66) in the Newtonian limit, n = 1. For κ2 � 1 (wavelengths
greater than the compaction length), the growth rate of bands approaches zero. For κ2 �
1 (wavelengths smaller than the compaction length), we can rewrite (70) as a function of
perturbation angle θ(t) as

ds

dt
=

(λ/n)ξ(1− φ0) sin 2θ

1 + 1−n
n

[
cos2 2θ + ξ sin2 2θ

] . (71)

Note that this equation has the same sin 2θ term in the numerator, indicating a tendency for
bands to grow at 45◦ to the shear plane. This behaviour is modified for n > 1, however, by the
term in the denominator that is multiplied by (1−n)/n. This term is negative, and reduces the
size of the denominator, leading to larger growth rates. The effect of shear-strain weakening
is represented by the cosine term in the denominator; it has maxima at 0 and 90 degrees,
corresponding with porosity bands that are parallel or perpendicular to the shear plane, as
these orientations can most efficiently localise strain (for an infinite domain). The sine term
in the denominator represents compaction-strain weakening, but because it is multiplied by ξ,
which is probably a small number, its effect is less important.
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Figure 9: Results for a stability model with non-Newtonian viscosity. (a) Normalised growth rate
of bands as a function of angle to the shear plane for ξ � 1. Lines for n = 1, 2, 3, 4, 5, 6 are shown,
with larger values of n corresponding to darker shades of grey. (b) Normalised amplitude exp[s(t)]
for n = 6, where s(t) has been computed by integrating (71) over time for a range of initial angles,
and then normalising the angular distribution of amplitude at each time by the maximum amplitude
at that time.

Figure 9a is a plot of equation (71) as a function of θ. It shows that for larger values of
n, the peak in growth rate at 45◦ splits into two peaks, at low and high angle to the shear
plane. Performing an integration of equation (71) gives s(t), which can then be exponentiated
to obtain the perturbation amplitude as a function of angle. This is shown in Figure 9b, for
n = 6. Smaller values of n are a poor fit to data. Note that there is initially growth of bands
at angles ∼ 70◦, but these bands are rapidly rotated out of an orientation that is favourable for
growth. In contrast, the bands that start at ∼ 15◦ grow rapidly and rotate very slowly. Hence
they continue to accumulate porosity and soon dominate the distribution.

Stability analysis is great for studying the onset of instability and in this case, by allowing
the perturbation to be advected by the background flow, we have extended it to larger values
of strain. But the experiments are clearly in a nonlinear regime, and are characterised by a
range of band angles, rather than just one. To extend our investigation, we need solutions to
the full, non-linear system of equations. These can only be obtained with numerical methods.
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The details of the numerics is beyond the scope of the present notes, but we’ll discuss the broad
outlines.

4.5 Numerical simulation of porosity bands

The system of non-dimensional governing equations have Γ = 0 and neglect all buoyancy terms.
They are written as follows

∂φ

∂t
−∇· (1− φ0φ)vm = 0, (72a)

∇· vm =
P
ξ
, (72b)

−∇· (φn∇P) +
P
ξ

= ∇· (φn∇P ) , (72c)

∇P = ∇· η
(
∇vm + ∇vTm

)
. (72d)

We will prescribe a non-Newtonian viscosity law (i.e. eqn. (69)) for the shear viscosity, and can
take the bulk viscosity to be constant or porosity dependent. The latter choice has important
consequences for the calculation results, but the simple choice of a constant bulk viscosity
produces results that are reasonably close to experiments.

(φ, P,

H, C)ij

(u, U)ij

(w, W )ij

(·)i−1j

(·)ij−1

Figure 10: One cell from the
middle of a staggered grid in two-
dimensions. It is the ith cell in
the x-direction and the jth cell
in the y-direction. Magma and
matrix velocities (denoted here
by vm = U î + W ĵ and vf =
ûi+wĵ) are stored on the faces of
the finite volume, while pressure,
porosity (and other variables that
will become relevant below) are
stored at the cell centre.

The equations are broken into two blocks, the hyperbolic block, which consists of all the
explicitly time-dependent equations (in this case, just (72a)), and the elliptic block, which
consists of the rest of the equations. These blocks are discretised using a finite volume approach,
which breaks the independent variables (x, t) into finite intervals of constant size ∆x,∆y,∆t,
and uses the fluxes across the faces of those intervals to update the values in the interiors.
Fluxes are therefore stored on the faces of the finite volume, while variables such as pressure
and porosity are stored at the cell centres, as shown in Figure 10. This is known as a staggered
grid approach. The finite-volume discretisation is fairly straightforward, though tedious to
write out in full. As a demonstration, consider the discretisation of equation (72b) in two
dimensions, which is relatively compact:

Un
ij − Un

i−1j

∆x
+
Un
ij −W n

ij−1

∆y
− P

n
ij

ξnij
= 0. (73)

There is an entire field of research devoted to finding efficient, accurate, and stable methods
for solving systems of non-linear, algebraic equations on computers, and it is not possible to
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Figure 11: Comparison of high-
porosity bands in an experiment and
a numerical simulation. (a) Experi-
ment to strain γ = 3.4 (b) Porosity
field (colour) from a simulation with
n = 6 and λ = 27 at a shear strain of
2.79. (c) The perturbation vorticity
from the same numerical simulation.
Perturbation vorticity is the percent
deviation from simple shear, ∇×[vm−
γ̇yî]/γ̇ × 100. Black lines in (b) and
(c) show the position of passive tracer
particles that were arrayed in vertical
lines at γ = 0; white dotted lines show
the expected position of the tracers
due only to simple shear. The linear,
low-angle red bands in (c) are weak
regions associated with high porosity
and enhanced shear, while the linear,
sub-vertical blue regions are regions of
reversed shear. (d) Histograms com-
paring band-angle distributions in ex-
periments and the numerical solution
from (b). Figure from Katz et al.
[2006].

convey any reasonable amount in these notes, so the numerical solution of these equations will
have to remain a “black-box” for the present.

Figure 11 shows the result of a numerical simulation with n = 6 and λ = 27 at a shear strain
of 2.79, as compared to an experiment. The domain is one compaction length high, and five
compaction lengths wide. The initial porosity was 4%. With progressive shear strain, porosity
localised into low-angle bands that are evident as red streaks. These bands shift and reconnect
with progressive strain to maintain low angle. They also localise strain, as shown in panel (c),
where strain rates exceeding that expected for simple shear are show by warm colours. Note
the existence of a conjugate set of high angle bands of diminished strain rate. The deviation of
the black lines shows the accumulated strain deviation from simple shear. Panel (d) shows a
histogram of band angles from experiments compared with an angular power spectrum of the
porosity field from panel (b).

Although numerical simulations and stability analysis with non-Newtonian viscosity and
large n both show a good agreement with experimental results, there are two key issues that
must be noted. Firstly, experimenters have confirmed that not all of their experiments that
produce bands are in the deformation regime where non-Newtonian viscosity is expected. Their
experiments with Newtonian viscosity produce the same distribution of low-angle bands. Sec-
ondly, olivine grains in deformation by dislocation creep have a non-Newtonian viscosity, but
with a value of n ≈ 3.5. So the requirement of large n seems problematic. In this context,
however, the non-Newtonian viscosity effectively means that weak zones at a low angle to the
shear plane can concentrate strain and hence become even weaker. It has been recently shown
that the same directionally-variable behaviour arises from anisotropic Newtonian viscosity. If
the pores between grains align at low angle to the shear plane, they can lead to a preferential
grain-sliding direction that represents a weak plane. This is predicted to lead to rapid growth
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of low-angle bands. See references for more information.

Further reading The instability was discovered by Stevenson [1989], who considered a 1D
model of an extending, partially molten system with porosity weakening viscosity. It was later
produced in experiments, leading to a series of papers that are reviewed by Kohlstedt and
Holtzman [2009]. The latest experiments use torsional deformation and larger samples [King
et al., 2010].

The theoretical development progressed with papers by Richardson [1998], who considered
the influence of buoyancy, Hall and Parmentier [2000], who added water to the problem, and
Spiegelman [2003], who sought to analyse the experiments in simple shear geometry. The non-
Newtonian analysis was developed by Katz et al. [2006]. More recent work by Butler [2009]
has reexamined how buoyancy-driven flow changes the system, and considered the instability
under pure shear rather than simple shear [Butler, 2010]. The porosity-banding instability was
not observed to occur in mid-ocean ridge simulations by Katz [2010].

5 Tectonic-scale models with constant porosity and no

melting

To make a preliminary investigation into magmatic flow at mid-ocean ridges and subduction
zones, we can make some rather severe assumptions that allow for an analytical solution. We
assume

No melting We assume that magma enters our model from outside the domain, and that
there is no melting internal to the domain.

Constant porosity We assume that the porosity is independent of space and time.

Constant mantle viscosity We assume that η = η0, constant.

No matrix buoyancy We assume that the mantle flow is driven entirely by the boundary
conditions (kinematically prescribed plates).

With these assumptions, the conservation of mass equations become ∇· vm = ∇· vf = 0. We
can therefore define two stream-functions as

vm = ∇× ψmĵ, (74a)

vf = ∇× ψf ĵ. (74b)

The matrix stream-function is driven by the boundary conditions (spreading plates in ridge
setting, down-going and overlying plates in subduction zone), while the magmatic stream-
function is driven by buoyancy and the fluid pressure gradient set up by solid flow.

The momentum equation for the matrix with constant viscosity, no buoyancy, and no com-
paction is given by

∇Pf = η0∇2vm.

Taking the curl of this equation (to eliminate the pressure gradient) and substituting (74a)
gives the biharmonic equation,

∇4ψm = 0. (75)

We need a solution to equation (75), subject to the boundary conditions illustrated in
Figure 12. The solution can be obtained in polar coordinates, and the mantle velocity is then
given by

vm =
1

r

∂ψm
∂θ

r̂− ∂ψm
∂r

θ̂, (76)
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Figure 12: Domain and boundary
conditions for the constant-porosity
models of a mid-ocean ridge and sub-
duction zone. (a) The mid-ocean
ridge domain. Plates spread with
half-rate U0 and have a sloping bot-
tom boundary. The solution lives
in the region below the plates, and
is symmetrical across the ridge axis.
The polar coordinate system is shown
on the right side of the diagram. (b)
Comparison of a thermally-induced
lithospheric boundary for an oceanic
plate, and the approximated linear
boundary. (c) Geometry and bound-
ary conditions for a subduction zone
model. The overriding plate is fixed
and the down-going slab converges
with rate U0 and dip β. The solution
lives in the wedge above the slab and
below the overriding plate. The po-
lar coordinate system is given at right.
Figure from Spiegelman and McKen-
zie [1987].

where r̂ and θ̂ are the polar basis vectors. The dimensionless matrix stream-function can be
obtained as

ψm = rf(θ) =

{
r(A sin θ +Bθ cos θ) for the mid-ocean ridge

r[C(sin θ − θ cos θ) +Dθ sin θ] for the subduction zone
(77)

where

A =
2 sin2 α

π − 2α− sin 2α
B =

2

π − 2α− sin 2α

C =
β sin β

β2 − sin2 β
D =

β cos β − sin β

β2 − sin2 β
.

This is known as the corner flow solution, because it produces streamlines that turn the corner
that is imposed by the boundary conditions, as shown in Figure 12. The intense shear at
the apex of the corner leads to a negative singularity of pressure there. This negative pressure
establishes a pressure gradient (suction) that, in the present model, extends out into the mantle
and draws magma toward it.

Using the matrix stream-function from equation (77), the magmatic stream-function can be
obtained as

ψf = ψm −
w0

U0

×
{(

2B
r

+ r
)

sin θ for the mid-ocean ridge,[
2
r
(C sin θ +D cos θ)− r cos θ

]
for the subduction zone,

(78)

where

w0 =
K0(1− φ0)∆ρg

µφ0

,

is the buoyancy-driven flow rate. Equation (78) shows that if w0 � U0, ψf ≈ ψm and the magma
moves with the mantle flow. If, on the other hand, w0 � U0, the magma is dominantly driven
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by buoyancy and pressure gradients arising from the mantle deformation, and the matrix flow
becomes irrelevant to the magma. If K0 = 1×10−13 m2, ∆ρg = 5000 kg/m2/sec2, µ = 1 Pa sec,
φ = 0.01, and U0 = 3 cm/yr then w0/U0 is of order 10. It would have been an unpleasant
surprise to find that our model predicted that magma would travel with the mantle flow!

(a) (b)

Figure 13: Solutions for the constant-porosity magmatic flow problem with U0 = 7.5 cm/yr,
η0 = 1021 Pa-sec, and φ0 = 1.5%. Dotted lines are mantle streamlines and solid lines are magmatic
streamlines. LR and LT are calculated using equation (79). (a) The ridge case with α = 13◦. Grey
region is the predicted ridge focusing region for magma generated at depth. (b) The subduction
case, with β = 60◦. Grey region is the predicted arc focusing region for magma from the slab.
Figure from Spiegelman and McKenzie [1987].

Figure 13 shows two example calculations, one ridge and one subduction zone, for parame-
ters as given in the figure caption. The dotted lines are matrix streamlines and the solid lines
are magmatic streamlines. Magma flows upward under buoyancy; if it near the ridge axis, it is
sucked toward it by the dynamic pressure gradient (grey region); if it rises further away from
the axis, its trajectory is bent away from the axis by mantle flow (white regions on the flanks).

What is the length-scale for focusing of magmatic streamlines to the ridge axis? This
depends on the relative importance of the dynamic suction that arises from the shear flow
compared to the buoyancy force, as a function of distance. A dimensional analysis of the
solution for the fluid pressure Pf indicates that the pressure gradient arising from mantle shear
has a length-scale given by

L =

[
η0U0

(1− φ0)∆ρg

]1/2

. (79)

This indicates that the pressure gradient is more important if the mantle viscosity is large
(the other parameters are relatively well constrained). If η0 = 1021 Pa-sec, then the L is
about 10 km, whereas if η0 = 1019 Pa-sec, L is about 1 km. In the former case, we’d expect
magmatic streamlines to be significantly bent by the dynamic pressure gradient, driving flow
into the corner. In the latter case, we’d expect buoyancy to dominate and give magmatic
streamlines that are generally vertical. Given our current understanding of mantle rheology at
plate boundaries, it is unlikely that the suction effect due to mantle corner-flow is a driver of
melt focusing toward the ridge axis or volcanic arc.

Further reading The analysis above was developed by Spiegelman and McKenzie [1987],
and closely parallels a similar analysis by Phipps Morgan [1987].

6 Governing equations: thermodynamics and chemistry

So far, we’ve focused on problems in coupled magma/mantle dynamics where there is no melt-
ing. But it is melting that produces magma in the first place, and links mantle convection
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and plate tectonics with magmatism and volcanism. So it is important to put melting into our
models!

Melting is a thermodynamic process of phase-change whereby solid grains of rock reach their
melting temperature and some of their mass is converted from the solid state to the liquid state.
The full thermodynamics of mantle melting are horrendously complicated, requiring more than
10 thermochemical components (and a similar number of mineral phases) to accurately describe
the system. Dynamical models of magma/mantle interaction require a simpler approach, but
one the preserves the basic features of more sophisticated models, and is consistent with con-
servation of mass and energy. Hence the foundation of our theoretical model should include a
PDE representing conservation of energy, as well as other representing conservation of mass for
each of the chemical species that we wish to include in the model.

6.1 Conservation of energy

To derive a conservation of energy equation, we begin by considering the same representative
volume element that was introduced in section 2.1 above. Within the RVE there is a mass
of magma and mantle; there is also some quantity of energy, which we now seek to constrain.
Let’s define H as the enthalpy per unit volume within the RVE. Recall that enthalpy is the sum
of internal energy (energy stored as sensible or latent heat) plus energy stored as compressional
work plus chemical potential energy (though we neglect this last contribution). The total energy
stored in the RVE is the sum of the enthalpy, the potential energy, and the kinetic energy. This
latter contribution can be neglected, because the mantle is moving extremely slowly. Hence we
can write the total energy contained with the RVE as

∫

RVE

(H − ρg · x)dV, (80)

where the second term in the integral represents the potential energy. If the axes are aligned
such that k̂ points in the direction opposite gravity (i.e. upward), we find that the potential
energy is −ρg · x = ρgz.

The total energy within the RVE changes according to fluxes of energy into/out of the RVE,
as well as sources or sinks of energy within it. There are three fluxes to consider: (a) fluxes of
enthalpy carried by the magma or matrix; (b) fluxes of potential energy carried by the magma
or matrix; and (c) fluxes of sensible heat by diffusion. These can be represented by an integral
over the surface of the RVE,

∫

∂RVE

(
ρhv− ρvg · x− k∇T

)
· dS, (81)

where h is the enthalpy per unit mass, k is the thermal conductivity, and T is the temperature.
Recall that an overbar represents a phase-averaged quantity, ρhv = ρfhfvfφ+ρmhmvm(1−φ).
The first term is the enthalpy flux out of the RVE, the second term is the potential energy flux,
and the third term is the diffusive heat flux. We have assumed that both the magma and the
matrix have the same temperature when they are in contact at a point; hence there is a single
temperature field T (x, t).

There are two source terms that we could consider within the RVE, radiogenic heat produc-
tion by decay of Uranium, Thorium, and Potassium, as well as heating by frictional dissipation.
This latter is the irreversible conversion of mechanical work into heat through friction (such as
what happens when you rub your hands together vigorously). For simplicity, and because these
terms are relatively small in the contexts that will concern us here, we neglect these sources of
energy. We can therefore write a conservation equation for the RVE as

d

dt

∫

RVE

(H − ρg · x)dV = −
∫

∂RVE

(
ρhv− ρvg · x− k∇T

)
· dS, (82)
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where the negative sign on the RHS ensures that a flux out of the RVE reduces the energy
within the RVE.

To convert this to a PDE we apply Gauss’ theorem to the RHS and allow our RVE to shrink
to the infinitesimal limit. We obtain

∂H

∂t
− g · x

(
∂ρ

∂t
+ ∇· ρv

)
+ ∇· ρhv− g · ρv = ∇· k∇T. (83)

Our job is now to simplify this equation using judicious assumptions and other conservation
laws. The sum of conservation of mass equations (8) and (9) tells us that

(
∂ρ

∂t
+ ∇· ρv

)
= 0. (84)

Expanding the divergence of the enthalpy flux term in (83) and using (84) leads to

∂H

∂t
+ hm∇· ρm(1− φ)vm + hf∇· ρfφvf + ρm(1− φ)vm ·∇hm + ρfφvf ·∇hf

− g · ρv = ∇· k∇T. (85)

Expanding and rearranging (84) we can write

∇· ρfφvf = −∇· ρm(1− φ)vm + ∆ρ
∂φ

∂t
. (86)

Substituting this into (85) and taking k = k to be constant gives

∂H

∂t
+ hf∆ρ

∂φ

∂t
− L∇· ρm(1− φ)vm + ρm(1− φ)vm ·∇hm + ρfφvf ·∇hf

− g · ρv = k∇2T, (87)

where L = hf − hm is the latent heat of melting, assumed to be constant.
Standard thermodynamic relations tell us how the enthalpy density changes with tempera-

ture and pressure,
dh = cPdT + ρ−1(1− αT )dP, (88)

where cP is the specific heat capacity, and α is the coefficient of thermal expansion. Hence we
can write that

∇h = cP∇T + ρ−1(1− αT )∇P,

= cP∇T + (1− αT )g, (89)

where we have assumed that the thermodynamic pressure is the static pressure, given by ∇P =
ρg.

Substituting (89) into (87) for hf and hm, assuming αf = αm = α, cfP = cmP = cP , and
extending the Boussinesq approximation such that ρm = ρf = ρ we can write

∂H

∂t
− ρL∇· (1− φ)vm + ρcPv ·∇T − ραTg · v = k∇2T. (90)

This equation states that changes in the volumetric enthalpy are due to advection of latent
heat, advection of sensible heat, changes in PV work by pressurisation, and diffusion of sensible
heat.
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Recall from your study of mantle convection that adiabatic flow creates a temperature
gradient in the mantle that is given by

dT

dz
=
αgT

cP
. (91)

Let us therefore define a mantle potential temperature T as

T = T exp(αgz/cP ). (92)

Using this definition and neglecting terms containing (αgzmax/cP )2 � 1 we can rewrite equation
(87) as

∂H

∂t
+ ρcP eαgz/cP v ·∇T = ρL∇· (1− φ)vm + keαgz/cP∇2T . (93)

This is the equation governing the evolution of volumetric enthalpy. We will see its use below.
We can write (93) in a more familiar form with a bit more work. First note that the

definition of enthalpy tells us that

h = cP (T − T0) + P

(
1

ρ
− 1

ρ0

)
+ h0, (94)

where h0 is the enthalpy density at T = T0, ρ = ρ0. The volumetric enthalpy can be written as

H = ρh

= ρ(φL+ hm). (95)

Combining (95) and (94), taking the time-derivative, and substituting for ∂H/∂t in equation
(93) gives

ρcP

(
∂T
∂t

+ v ·∇T
)

= −e−αgz/cPLΓ + k∇2T , (96)

where we have simplified the latent heat term using the conservation of mass equation (9).

6.2 Conservation of species mass

Suppose that our thermochemical system is composed of N chemical components, each of which
is a fundamental constituent with a conserved mass. Indexing these components with i ∈ [1, N ]
we can represent the volume concentration of component i in phase j as Ci,j, where j can take
values of f or m. Since the concentrations must sum to unity we can write:

N−1∑

i=1

Ci,j + CN,j = 1, (97)

which shows that if we know the concentration of any N−1 components, we can obtain the last
one by algebra. Hence, at most, we need 2(N − 1) PDEs to enforce conservation of component
mass.

The integral form of a pair of these equations reads

d

dt

∫

RVE

ρfφCi,fdV = −
∫

∂RVE

ρfφ (Ci,fvf −Di∇Ci,f ) · dS +

∫

RVE

XidV (98a)

d

dt

∫

RVE

ρm(1− φ)Ci,mdV = −
∫

∂RVE

ρm(1− φ)Ci,mvm · dS−
∫

RVE

XidV, (98b)
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where Xi is the rate of mass-transfer of component i from the matrix to the magma and Di is
the diffusivity of component i in the magma. Mass transfer occurs through melting/freezing,
as well as through reactive equilibration. For each component, there is separate melting rate
Γi such that

N∑

i=1

Γi = Γ.

Each component also has an equilibrium coefficient Ki, which relates the concentration in the
fluid phase to the concentration in the matrix phase as

Ci,m = KiCi,f . (99)

This coefficient may be a function of pressure and temperature. The reaction caused by dise-
quilibrium is then written as

XR,i = Ri(Ci,m −KiCi,f ), (100)

where Ri is a reaction-rate constant that could depend on porosity, pressure, and temperature,
and we have assumed linear reaction kinetics. Since we interpret these reactions to be mass
neutral, unlike the melting reactions, we require that

N∑

i=1

Ri = 0.

Combining reaction and melting we have

Xi = Γi +Ri(Ci,m −KiCi,f ). (101)

Returning to equation (98) and using the usual technique, we can rewrite as a set of PDEs

∂φCi,f
∂t

+ ∇· φvfCi,f =
1

ρ
[Γi +Ri(Ci,m −KiCi,f )] +Di∇· φ∇Ci,f , (102a)

∂(1− φ)Ci,m
∂t

+ ∇· (1− φ)vmCi,m = −1

ρ
[Γi −Ri(Ci,m −KiCi,f )] , (102b)

where we have made the Boussinesq approximation and taken the densities to be equal. Using
the conservation of mass equations (8) and (9) we can simplify this as

∂Ci,f
∂t

+ vf ·∇Ci,f =
1

φρ
[Γ (Ci,Γ − Ci,f ) +Ri(Ci,m −KiCi,f )] +Di∇· φ∇Ci,f , (103a)

∂Ci,m
∂t

+ vm ·∇Ci,m = − 1

(1− φ)ρ
[Γ (Ci,Γ − Ci,m) +Ri(Ci,m −KiCi,f )] , (103b)

where Ci,Γ = Γi/Γ is the mass-fraction of component i in the mass that is subtracted from the
solid during melting (or added to it during freezing). These two equations state the changes
in the composition of a phase at a point in space are due to advection of different composition
onto that point, interphase transfer of mass by melting or freezing, and reactive equilibration
between phases (and diffusion, for the liquid phase).

6.3 Thermodynamic equilibrium in a two-component system

Two key assumptions will allow us to simplify the rather complicated equations for conservation
of components. They are rather restrictive in terms of limiting the realism of our petrological
model, but they allow us to write down a system that is straightforward, if not easy, to solve.
These assumptions are
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Two components Although it is almost absurd, we assume that the mantle is composed of
two components. There is really no way to map these onto real, chemical entities, so we’ll
simply refer to them as an enriched and a depleted end-member. A rock containing a
more enriched composition (more of the enriched end-member) will melt at lower tem-
perature than a less enriched (or more depleted) composition. Because we have only two
components, we need only one equation per phase.

Thermodynamic equilibrium We also assume that the grain-scale reaction process between
the melt and the matrix phases is sufficiently fast that the system is in thermodynamic
equilibrium everywhere. This means that the fluid composition and the solid composition
are always in a relationship that is given by the equilibrium distribution coefficient, Ki

(or some other algebraic rule). Hence we only need to track the composition of one of
the two phases. Or, equivalently, we can track the bulk composition. Another result of
the assumption of thermodynamic equilibrium is that the phase fraction of melt (i.e. the
porosity) is determined entirely by the local enthalpy and composition. Although we used
the conservation of mass equations to derive our thermochemical PDEs, above, we will
not be able to use them to model the evolution of porosity.

Applying these two assumptions, we can sum equations (102) and define C = φC1,f+(1−φ)C1,m

as the bulk composition, giving

∂C

∂t
+ ∇· vC = D∇· φ∇Cf . (104)
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Figure 14: Phase diagrams for a binary system. Enriched compositions have low values of C,
depleted compositions have high values of C. (a) Phase loop in the T–C-plane with a constant
Clapeyron slope (γ = ∂P/∂T ). The solid red lines show a loop at constant pressure. (b) The phase
loop has been linearised about some reference composition. Figure from Katz [2010].

Equations (93) and (104) provide a theoretical framework for conservation of energy and
species mass in a two-phase, two-component system. Note, however, that to solve them, we
need a means to calculate the temperature, porosity, and phase compositions as a function of
the volumetric enthalpy H and the bulk composition C. This calculation must be based on a
phase diagram, which shows the pressure–temperature–composition stability regions of different
phases. A simple phase diagram, relevant for a two-component system, is shown in Figure 14a,
and is simplified by linearising the compositional dependence, as shown in Figure 14b. We need
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four equations to solve for the four unknowns (T, φ, Cf , Cm). One of these is the definition of
bulk composition,

C = φCf + (1− φ)Cm; (105)

a second one is the definition of bulk, volumetric enthalpy,

H = ρ[φhf + (1− φ)hm]

= ρφL+ ρcP (T − T0). (106)

In writing this definition of the bulk enthalpy, we have assumed that density is constant, and
hence 1/ρ − 1/ρ0 = 0. We have also taken the reference enthalpy at T0 to be zero, which we
can do without loss of generality. The last two equations are the definitions of the liquidus
and solidus. The solidus is the surface in P–T–C space across which the system goes from a
purely solid system (below the solidus), to a partially molten system (above the solidus). The
liquidus is the surface in the same space across which the system goes from partially molten to
completely molten. The liquidus is at higher temperature than the solidus, and is represented
by a blue mesh in Figure 14. The linearised surfaces in Figure 11b provide the simplest instance
of these surfaces, given by

T = T0 +MSCS + γ−1Pl (107a)

T = T0 +ML(CL −∆C) + γ−1Pl, (107b)

where subscripts S, L represent the solidus and liquidus surfaces, respectively, M is the slope
along the composition axis, and γ−1 is the slope along the pressure axis, which is given by
the inverse of the Clausius-Clapeyron parameter. We assume that the pressure variation is
controlled by the lithostatic pressure, Pl = −ρgz, taking the z-direction as upward (i.e. k̂ · ĝ =
−1).

Equations (105), (106), and (107) are four equations for the four thermochemical unknowns,
as a function of H and C. Determining their values by solving this set of equations is sometimes
known as the Enthalpy method. Before finding the solutions, however, it is helpful to non-
dimensionalise variables.

6.4 Entropy formulation and the melting rate

In assuming thermodynamic equilibrium, the melting rate is no longer explicit in our formu-
lation. In fact, it is given implicitly by the system of PDEs and the phase constraints. It is
possible unravel this implicit dependence and obtain an approximate expression for the melting
rate. To do so, we return to equation (90), which reads

∂H

∂t
− ρL∇· (1− φ)vm + ρcPv ·∇T − ραTg · v = k∇2T,

and seek to convert it to an equation for entropy, rather than enthalpy or temperature. Sub-
stituting for ∂H/∂t, as we did above to obtain (96), neglecting diffusion, and rearranging gives

ρcP
∂T

∂t
+ LΓ + ρv · [cP∇T − αTg] = 0. (108)

To bring the thermodynamic entropy into this equation, we use L = T∆S = T (Sf − Sm) and
the relationship

dS =
cP
T

dT − α

ρ
dP

=
cP
T

dT + αgdz, (109)
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where S is the specific entropy, with units of J/kg/K, and we have assumed a lithostatic pressure
with k̂ · ĝ = −1. Now we can treat each term of (108) separately,

ρcP
∂T

∂t
= ρT

[
(1− φ)

∂Sm
∂t

+ φ
∂Sf
∂t

]
, (110a)

ρv · [cP∇T − αTg] = ρT [(1− φ)vm ·∇Sm + φvf∇Sf ] , (110b)

LΓ = ρT

[
Sf

(
∂φ

∂t
+ ∇· φvf

)
− Sm

(
∂(1− φ)

∂t
+ ∇· (1− φ)vm

)]
, (110c)

where we have used (109) and the conservation of mass equations (8) and (9). Substituting
each of these back into equation (108) and rearranging gives us

∂

∂t
[(1− φ)Sm + φSf ] + ∇· [(1− φ)vmSm + φvfSf ] = 0, (111)

which shows that the bulk entropy is conserved (as long as we neglect irreversible processes
such as diffusion). More importantly, however, is that since Sm = Sf −∆S, and ∂(∆S)/∂t = 0,
we can also write (108) as

Γ∆S + ρ
∂Sm
∂t

+ ρv ·∇Sm = 0. (112)

Similarly, since Cm = Cf −∆C, we can rewrite equation (104) as

−Γ∆C + ρ
∂Cm
∂t

+ ρv ·∇Cm = 0. (113)

To complete this calculation, we will need one more equation: the solidus phase-constraint
(107a), cast in terms of entropy. To obtain it, we integrate (109) with T ≈ T0 and rearrange to
give

T − T0 =
T0

cP

(
Sm − Sm0 +

α

ρ
Pl

)
,

where T0 is the mantle potential temperature before melting begins, and Sm0 is a reference
entropy at T = T0 and Pl = 0. Combining this with (107a) and taking the slopes of the solidus
and liquidus as MS = ML = M gives

Sm = Sm0 +
McP
T0

Cm +

(
γ−1cP
T0

− α

ρ

)
Pl. (114)

Finally, combining equations (112), (113), and (114) and rearranging we obtain

Γ = ρv · k̂
(
γ−1ρg − αgT0/cP
M∆C + L/cP

)
. (115)

Note that melting is driven by the mean upwelling rate times a constant coefficient. That
coefficient increases with the Clapeyron slope γ−1, and has a minor reduction due to adiabatic
decompression. A steeper solidus slope, or larger difference between liquid and solid reduce the
melting rate, as does the latent heat of melting.

6.5 Non-dimensionalisation

The temperature and composition variables are shifted and renormalised to give a clean-looking
system of dimensionless equations. Their corresponding non-dimensional variables are

θ =
T − T0

∆T
, θ̃ =

T − T0

∆T
, Θ =

C

∆C
, (116)
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where ∆C is the difference in composition between the liquidus and the solidus at the reference
temperature and pressure (T = T0, P = 0). The temperature difference is defined as ∆T =
MS∆C. Then, to the scaling in (32), we add

[H] ∼ ρcP∆T, [v] ∼ φ0w0. (117)

Substituting equation (116) and scaling variables using (32) and (117), the conservation of
energy (93) and composition (104) equations become

∂H

∂t
+ φ0eAz∇· vθ = φ0S∇· (1− φ0φ)vm + Pe−1

T eAz∇2θ (118)

∂Θ

∂t
+ φ0∇· vΘ = φ0Pe−1

C ∇· φ∇Θf , (119)

where we have introduced four new dimensionless numbers: A = αgδ/cP is the adiabatic
parameter and controls the adiabatic gradient, S = L/(cPMS∆C) is the Stefan number and
controls the importance of changes in latent heat, PeT = w0δ/κ is the thermal Peclet number
and controls the importance of thermal diffusion, and PeC = w0δ/D is the compositional Peclet
number and controls the importance of chemical diffusion.

Non-dimensionalising equations (105), (106), and (107) gives

Θ = φ0φΘf + (1− φ0φ)Θm, (120)

H = φ0Sφ+ θ̃, (121)

ΘS = θ̃S +G−1z, (122)

ΘL =M
(
θ̃L +G−1z

)
− 1. (123)

In this set of equations we have introduced another two dimensionless parameters: G =
γMS∆C/(ρgδ) is the dimensionless variation in solidus pressure with temperature, and M =
MS/ML is the ratio of the solidus and liquidus slopes. Taking M = 1, we can combine these
four equations to obtain

φ =
H −Θ +G−1z

φ0(1 + φ0S)
, (124)

which applies when 0 < (H −Θ +G−1z) < 1 + φ0S, i.e. when the system is partially molten.
The other thermochemical variables, θ,Θf ,Θm, can be calculated by substituting equation
(153a) into equations (121)–(123). The relationship between non-dimensional temperature θ̃
and non-dimensional potential temperature θ is given by

θ̃ + θ∗ = (θ + θ∗)eAz, (125)

where θ∗ = T0/(MS∆C).

Further reading As with much of this subject, nearly everything was laid out in McKenzie
[1984]. After that, few authors touched the energy equation until recently. A derivation in
concert with the damage formulation of two-phase mechanics was produced in Bercovici and
Ricard [2003]. The enthalpy method was adapted from metallurgy to magma dynamics by Katz
[2008], though it is not different from the approach used by Ribe [1985a] in column models.
Other authors have re-derived the energetics of magma/mantle dynamics in the context of
column models. These include Sramek et al. [2007] and Hewitt and Fowler [2008]. The entropy
formulation that is given above comes from Hewitt [2010].
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7 Melting column models

Our goal, in this section, is to develop simple, one-dimensional solutions to the governing
equations for a vertical column of mantle that is upwelling toward the surface. In this column,
the magma and mantle upwelling rates will be represented as w(z) and W (z), respectively.
At some depth z0 representing the base of the melting region, where the porosity is zero, the
mantle upwells with speed W0. Since k̂ points upward, all of these speeds are positive. Using
this information, and making the Boussinesq approximation ρf = ρm = ρ we can sum the
conservation of mass equations and integrate to obtain

φw + (1− φ)W = W0, (126)

which states that the mass flux through the column at any depth is equal to the mass flux into
the base of the column.

Since the rates of thermal and chemical diffusion in the mantle are rather small, we can
ignore them and simplify the dimensional conservation of energy and composition equations to

ρcP

(
∂T

∂t
+ [φw + (1− φ)W ]

∂T

∂z

)
= −LΓ− ραg[φw + (1− φ)W ]T0, (127)

∂

∂t
[φCf + (1− φ)Cm] +

∂

∂z
[φwCf + (1− φ)WCm] = 0, (128)

where T0 is the potential temperature of the mantle column before it begins to melt. Under
this simplification, the adiabatic temperature profile beneath the melting region is given by

Ta(z) = T0 −
αgT0

cP
z. (129)

For simplicity we’ll assume the linearised solidus and liquidus, with the same slope for both,
M = 1. Thus we can write

TS = T0 − γ−1ρgz +MCS, CL = CS −∆C. (130)

The depth of initial melting is then computed by finding the depth z0 at which the adiabatic
temperature is equal to the solidus temperature. Equating TS and Ta(z) gives

z0 =
T0 +MC0 − T0

γ−1ρg − αgT0/cP
. (131)

Having obtained this depth, we can restrict our domain of interest to the range z0 ≤ z ≤ 0.
Let’s seek a steady-state solution for the column (∂·/∂t = 0), applying the boundary con-

ditions

W = W0, C = C0, φ = 0, and T = T0 +
αgT0

cP
z, at z = z0. (132)

Integrating equation (128) gives

φwCf + (1− φ)WCm = W0C0. (133)

Combining equations (126) and (133) gives an equation for the magmatic flux φw at any height
in the column,

φw = W0F = W0
Cm − C0

Cm − Cf
= W0(Cm − C0)/∆C, (134)

where F is defined to be the degree of melting. It can be graphically interpreted using the
lever rule: the numerator is the distance between the initial bulk composition and the current
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solid composition, the denominator is the distance between the solid and liquid compositions.
Conservation of fluid mass at steady state gives us Γ = ρW0dF/dz. To calculate F (z), we
substitute this expression for Γ along with equation (126) into the temperature equation (127)
to obtain

cP
∂T

∂z
+ L

∂F

∂z
+ αgT0 = 0,

which can be integrated with the boundary condition for T in (132) to give

LF + cP (T − T0) + αgT0z = 0. (135)

Now we can combine equations (135), (132), (130), and the definition F = (Cm−C0)/∆C, and
with some laborious algebra we obtain

F (z) =
γ−1ρg − αgT0/cP
L/cP +M∆C

(z − z0), (136)

an equation that bears a close resemblance (unsurprisingly) with (115).
We can see from equation (136) that the degree of melting increases linearly with distance

up the melting column z − z0. In the denominator, the first term represents the latent-heat
cost of melting, while the second term represents the change increase in solidus temperature
with progressive melting. Increasing the latent heat and the compositional dependence of the
solidus both produce lower degrees of melting. In the numerator, the first term represents the
decreasing solidus temperature with distance up the column, while the second term represents
the decrease in temperature due to adiabatic decompression. The former drives melting while
the latter reduces it.

C

Cf

Cm

-

Figure 15: Numerical solution for a one-dimensional column of mantle that is upwelling and
melting. Each panel shows a different variable. Parameter values are W0 = 3.2 cm/yr, T0 = 1480
K, C0 = 0.7, ρ = 3000 kg/m3, ∆ρ = 500 kg/m3, K0 = 4× 10−9 m2, µ = 10 Pa-sec, η = 1019 Pa-sec,
L = 3× 105 J/kg, cP = 1000 J/kg/K, α = 3× 10−5 K−1, γ = 10−7 K/Pa, and M = 600 K. Dotted
line in (b)–(g) has C0 = 0.65. (a) Temperature as a function of depth. Dashed lines are contours
of F . Dotted line is adiabatic trajectory without melting. (b) Degree of melting. (c) Solid and
liquid composition. (d) Porosity. (e) Magma flow speed. (f) Matrix flow speed. (g) Compaction
pressure. Figure from Hewitt [2010].

Approximate solutions can be found for other variables by noticing that in most of the
upwelling column W � w, and by assuming that melt extraction is dominantly driven by
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buoyancy, rather than gradients in the compaction pressure. Starting with the dimensional
equation of momentum conservation for the fluid in one dimension,

φ(w −W ) =
K0φ

n

µ

(
∂P
∂z

+ ∆ρg

)
,

where we have taken K = K0φ
n, and applying these assumptions gives

φw ≈ K0∆ρgφn

µ
. (137)

We can use φw = W0F to obtain

φ ≈
[

µ

K0∆ρg

]1/n

(W0F )1/n, (138)

w ≈
[

µ

K0∆ρg

]1/n

(W0F )(n−1)/n, (139)

W ≈ W0(1− F ). (140)

If we take n = 3, we see that porosity increases up the column, but only proportional to z1/3,
and the melt flow speed increases with z2/3, even though the melt fraction increases with z.
This is because of the nonlinear relationship between porosity and permeability, which allows
for the rapid extraction of melt. These relationships are illustrated in more detail in Figure 15,
which shows two numerical solutions to the governing equations. Parameter values are given
in the figure caption.

It is worth looking at the 1D porosity profile (Figure 15d) in more detail, and thinking a
bit about scaling. Note that it has three distinct segments: one at the bottom, where porosity
increases sharply, one in the middle, where it increases gradually, and one at the top, where
it again increases sharply. Recall that the compaction length is the length-scale over which
perturbations in the compaction pressure decay; this is what sets the size of the upper and
lower boundaries. Let’s consider the bottom boundary. Here the porosity grows by melting,
and is transported upward by advection. The compaction pressure transmits the “information”
about this porosity gradient, and the impermeable barrier at its base, upward through the
column, for about one compaction length. In that distance, the compaction pressure gradient
balances the buoyancy force driving segregation, so ∂P/∂z ≈ 1, from the compaction equation
(37). Then, from Darcy’s law (39), these two forces cancel and there is no driving force for
segregation! Hence the compaction rates is ∂W/∂z ≈ 0, and we can rewrite the steady-state
mass conservation equation (35) as

∂φ

∂z
≈ Γ

φ0W
,

so the change in porosity with height in this boundary layer is simply due to melting, with no
melt segregation.

Above this boundary layer, far from the impermeable barrier and the rapid change in poros-
ity, the balance shifts. The gradient in compaction pressure becomes small, and no longer bal-
ances the buoyancy force. So the buoyancy force drives segregation of magma. This segregation
is resisted by the Darcy drag on the grains (the interphase force I). So the balance in the bulk
of the column is given by Darcy’s law; melt segregates under buoyancy, the porosity is roughly
constant, and the melting rate balances the compaction rate,

∂W

∂z
≈ − Γ

(1− φ0φ)
.
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Not much can happen in one dimension, due to the constraint that all the mass in the
column must travel vertically. The consequence of this is that the degree of melting at the
top of the column is equal to what would be predicted by the batch melting equation. Adding
magma transport apparently didn’t gain much! But things get more interesting next.

Further reading Melting column models go back at least to Turcotte and Ahern [1978],
Ahern and Turcotte [1979] and McKenzie [1984], with excellent treatment by Ribe [1985a].
More recently, Sramek et al. [2007] developed sophisticated treatment for a one-component
system, as did Hewitt and Fowler [2008]. This was extended by Hewitt [2010], which is the
basis for much of the discussion in the section above.

8 Disequilibrium reactive flow and channellisation

What are we missing if we just study the one dimensional melting column? One indication
comes from observations of the Oman ophiolite, a vast exposure of rocks that were previously
in the mantle, beneath a spreading centre. The ophiolite is primarily composed of dunites
(almost pure olivine), and harzburgites (orthopyroxene and olivine). Interesting, the dunites
form tabular bands that seem to align with the contemporaneous direction of gravity. Figure 16
is a photo-mosaic of an outcrop showing dunite bands.

Figure 16: A photo-mosaic of an outcrop of the Oman ophiolite. Light coloured bands are dunite;
dark coloured bands are harzburgite. Image from Braun and Kelemen [2002].

The geological interpretation is that magma ascending through the mantle from deeper
depths reacts as it rises, dissolving harzburgite and precipitating olivine. This can be under-
stood by considering the linearised solidus (107a) and assuming constant temperature; there is
then a relationship between pressure and concentration that melts coexisting with solid man-
tle must follow. Decreasing pressures mean increasing solubility of SiO2 in the melt. Since
harzburgite is a more silica-rich mineral than Olivine, the melting occurs by the following
melting reaction

Melt1 + Pyroxene + Spinel ⇒ Melt2 + Olivine. (141)
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We won’t be worried here about the spinel contribution to this reaction, and we won’t focus
on the chemical details, but will rather use this reaction to motivate a simple model of reactive
flow with disequilibrium melting. In this model, the porosity will not be computed by assuming
thermodynamic equilibrium, but rather with the conservation of mass equation (9), where Γ is
given by the reactive melting rate (also called the dissolution rate). We can guess that this rate
would be related to the distance from thermodynamic equilibrium: how undersaturated is the
magma in SiO2 as it rises. A simple assumption is that the melting rate is linearly proportional
to this undersaturation. Hence we can write it as

Γ = RA(Ceq
f − Cf ), (142)

whereR is a reaction-rate coefficient, andA represents the surface area per unit volume on which
reaction can occur. More about these coefficients later. We have assumed a two-component
system in writing (142), where SiO2 is one of the components (the one represented by Cf ), and
the other component, representing all the other stuff in the magma, is given by 1− Cf .

In the model of reactive flow that we develop here, we neglect to solve for conservation of
energy, and assume that within the melting region, the temperature is approximately isothermal
(which we saw in the previous section is not the case). The important equations are the
statements of conservation of species mass, which now take the dimensionless form

∂Cm
∂t

+ vm ·∇Cm =
−φ0

1− φ0φ
(CR − Cm)Γ, (143a)

∂Cf
∂t

+ vf ·∇Cf =
1

PeC
∇2Cf +

1

φ
(CR − Cf )Γ, (143b)

where CR is the concentration of SiO2 in the product of the melting reaction, the magma that
gets generated by reactive melting. In general CR is not equal to either Cf or Cm. These
equations state that changes in concentration of a phase are due to advection by that phase
and reactive melting; diffusion also causes changes to the liquid phase. Note that there is a
singularity in the magma concentration equation at φ = 0. Note also that we have approximated
∇· φ∇Cf as φ∇2Cf .

In this model we’ll assume that the mantle matrix is static (not upwelling) except for
compaction, and hence we can use the Helmholtz decomposition of equation (56), but throw
out ψ and retain just vm = ∇U . With this restriction, non-dimensional governing equations
for the mechanics are written as

∂φ

∂t
− φ−1

0 ∇· (1− φ0φ)vm = Γ, (144a)

∇2U =
P
ξ
, (144b)

−∇· (φn∇P) +
P
ξ

= −∇· φnk̂, (144c)

φvf = φvm − φn
[
∇P − (1− φ0φ)k̂

]
, (144d)

where ξ = ζ + 4η/3 and k̂ points upward (opposite the direction of gravity), as usual.
To complete the model, we need to specify the equilibrium solubility as a function of pressure

Ceq
f , and the concentration of SiO2 in the reaction product CR. The former can be approximated

as a linear profile, given in dimensionless terms as

Ceq
f (z) = βz, (145)

where we have taken the pressure to be lithostatic and replaced it with height through the
domain. β = bρgδ is the dimensionless change in solubility per compaction length, and b is
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the change in solubility per Pascal of pressure. One choice for concentration in the reaction
product is as follows

CR = Ceq
f + α, (146)

where α is an offset from the equilibrium solubility.
We can gain some insight into the reactive flow process by considering a steady-state version

of equation (143b) with no diffusion (PeC → ∞), and approximating CR − Cf ≈ α and

∇Cf ≈ βk̂. Substituting and rearranging gives

Γ ∼ φwβ

α
. (147)

This shows that the reactive melting rate is driven by the flux of magma φw up a solubility
gradient β. A larger α, equivalent to a greater compositional difference between the fluid
concentration and the reaction-product concentration, means that less melt must be produced
to reattain equilibrium. This shows why reactive melting is sometimes called flux melting—it
is driven by the flux of magma from below. This also suggests the possibility of an instability:
if the flux is higher at a point in the domain, more melting will occur there, and in the column
above it. This melting will lead to a higher magmatic flux through the column above. Below we
demonstrate the existence and nature of this channellisation instability using linearised stability
analysis and numerical simulations.

8.1 Linearised stability analysis

(a) (b)

Figure 17: Linearised stability analysis of the reactive flow problem. (a) Example perturbation
solution for porosity. The domain is one compaction length along each side, and hence the dimen-
sionless wavelength is λ = 1/4, and the wavenumber is k = 2π/λ = 8π. Panel from Aharonov et al.
[1995]. (b) The growth rate of perturbations in a linearised stability analysis of the reactive flow
problem. Panel from Spiegelman et al. [2001].

As we hinted at above, there is a feedback between porosity, flux, and melting: a region of
higher porosity has higher permeability, and can therefore accommodate a greater flux; a larger
flux leads to more rapid reactive melting according to equation (147), and this leads to higher
porosity. This feedback causes an instability, called the Reactive Infiltration Instability, that
we will consider now.
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Consider a set of high and low porosity bands that are oriented along the direction of gravity,
as a perturbation to a uniform porous flow in a 2D domain, as shown in Figure 17a. The high
porosity bands will have more reactive melting, and hence a higher flux, and should grow. The
low porosity bands will have lower flux, and should shrink. Assuming an approximate (“quasi”)
steady-state, and that the porosity everywhere is rather small, we can write the conservation
of mass equation as ∇ · vm ≈ −Γ. Then, using ∇ · vm = ∇2U , we can write the continuity
equation as

P
ξ
≈ −Γ. (148)

This means that where the melting rate is high, the compaction pressure will be low; magma
should flow out of the low porosity areas into the high porosity areas... if the gradient is on the
scale of the compaction length! So this helps us to explain the existence of an instability.

What is the growth rate of the instability? A linearised stability analysis (not shown here)
predicts the curves in Figure 17b. The wavenumber k is the number of full wavelengths in the
x-direction, per compaction length. The vertical dashed line indicates the wavenumber k = 2π
corresponding to a wavelength that is equal to the compaction length. Wave-numbers larger
than 2π (wavelengths smaller than the compaction length) grow, those smaller than 2π do not.
So again we see that the compaction length controls the length-scale of magmatic processes.

8.2 Numerical models

Numerical solutions provide a more detailed picture of the reactive flow process. Figure 18a
shows a schematic diagram of the computational domain. Melt flows into the bottom with
dimensionless flux of φw = 1, and passes through an unreactive zone before entering the
reactive zone. The solid composition is initially set to Cm = 0.95 with a very small white noise
on the grid scale (this is not a realistic representation of the SiO2 content, obviously!). Melt is
free to flow out of the top of the domain. Panel (b) shows the equilibrium solubility Ceq

f as a
function of height through the domain.

To obtain the full, dimensionless model, we must write the non-dimensional form for the
melting rate. Using the scalings proposed above this becomes

Γ = DaA(Ceq
f − Cf ), (149)

where

Da =
Rδ

φ0w0ρ
(150)

is the Damköhler number, the ratio of the advective time-scale for melt to travel across one
compaction length to the reaction time-scale. Large Damköhler numbers mean that the system
advects rapidly and is hence further from equilibrium, small Damköhler number means that the
system reacts rapidly and is close to equilibrium. Substituting the reaction rate, equilibrium
profile, and CR = 1 into (143) gives

∂Cm
∂t

+ vm ·∇Cm =
−φ0Da

1− φ0φ
(1− Cm)A(βz − Cf ), (151a)

∂Cf
∂t

+ vf ·∇Cf =
1

PeC
∇2Cf +

Da

φ
(1− Cf )A(βz − Cf ), (151b)

where the non-dimensional area of reaction is

A =
Cm(1− φ0φ)

(1− φ0)
.
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Figure 18: Reactive flow domain and solubility gradient. (a) A schematic diagram of the com-
putational domain with an unreactive zone of one compaction length in height at the base. The
side boundaries are periodic. (b) The imposed solubility gradient in the domain. Equilibrium
concentration is on the x-axis. Figure from Spiegelman et al. [2001].

These equations (151), for the concentration of the soluble component in the liquid and solid,
combined with equations (144), are solved numerically to produce simulations of reactive flow.

The details of the numerical solution are not considered here, but we will discuss the results.
The model has two important control parameters, that determine the character of the solution:
the Damköhler number and the compositional Peclet number. The former determines the rate of
reaction relative to advection; large Da means the system rapidly reacts to restore equilibrium,
and hence is never far from equilibrium. The latter determines the rate of diffusion relative to
advection; large PeC means that chemistry does not diffuse rapidly, and effectively follows the
magmatic flow. To begin our discussion, we consider a set of Da,PeC that are large enough to
produce dissolution channels.

Figure 19 shows the evolution of porosity for a simulation in which Da = 40 and PeC = 40.
Channels form after a rather long initial phase when porosity remains stable (t is the non-
dimensional time, with 1 time-unit corresponding to the time for a parcel of magma to traverse
the domain vertically). Channels emerge from the background at about t = 44 and then evolve
more rapidly into a coalescing network. By t = 116, channels have reached a porosity near 4 per
cent, while the interchannel regions have compacted down to 0.1%. Melt from the interchannel
regions is mostly extracted laterally into the channels, where it rises rapidly through the domain.

The porosity result at t = 116 is repeated in Figure 20, along with contemporaneous plots
of the dissolution rate Γ, the solid concentration Cm, and the fluid concentration Cf . The
dissolution rate is largest in the channels, where the flux is high, and smallest between channels,
where the flux is nearly zero. This leads to the chemical depletion of the channels, as shown in
the solid concentration field. The fluid concentration appears nearly uniform in the x-direction,
and mirrors the gradient in the equilibrium concentration in z. Close inspection reveals vertical
streaks where advection in the channels has smeared the vertical concentration upward, leading
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Figure 19: Porosity evolution in a reactive flow simulation with Da = PeC = 40. (a) The evolution
of the porosity field through time. t is the non-dimensional time, equal to the time required to
traverse the box once at the background porosity φ0. The black line is a contour of porosity
corresponding to 1% enhancement over the background. At t = 116, the maximum porosity is 3.9%
while the minimum porosity is 0.1%, corresponding to a flux-difference of ∼1500 between channels
and interchannels. (b) Cross section of porosity at z = 4.5 (dashed line in panel (a)). Interchannel
regions decrease in porosity due to compaction; channels increase due to reactive melting. Adapted
from Spiegelman et al. [2001].
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Figure 20: A snapshot from a simula-
tion of reactive flow with Da = PeC = 40
at t = 116. Porosity as in Figure 19. Dis-
solution rate Γ is high in the channels,
where the melt flux is high (see equa-
tion (147)). Solid concentration is low-
est in the channels, where dissolution has
depleted it. The fluid concentration is,
to leading order, equal to the equilib-
rium concentration. It differs noticeably
in the channels, where rapid advection
drags fluid upward faster than it can react
back to equilibrium, leading to rapid dis-
solution. Figure from Spiegelman et al.
[2001].

to larger disequilibrium and higher dissolution rates.
What then, is the effect of varying the control parameters Da and PeC? As shown by

the linearised stability analysis, to leading order their effects are the same, and what actually
controls the system is the product DaPeC . Figure 21 shows results from a suite of simulations
with different values of the Da and PeC .

Is this a good model for the dunite bands that are observed in the Oman ophiolite? What
other observational constraints can be brought to bear? What are the consequences for geo-
chemistry? All of these questions have been addressed, to some extent, in the published liter-
ature. See below for references.

Further reading There is a large literature on the observational evidence for reactive flow in
the mantle. Two early and oft-cited papers are Kelemen et al. [1992] and Kelemen et al. [1995a],
regarding the ophiolite in Oman. More recent surveying of the Oman ophiolite by Braun and
Kelemen [2002] and Braun and Kelemen [2002] has documented the spatial distribution of
dunite bands.

The theoretical and computational literature on reactive flow as related to the mantle be-
gins with Aharonov et al. [1995] (stability analysis) and Aharonov et al. [1997] (simulations).
Spiegelman et al. [2001] produced more advanced numerical models, and revised the linearised
stability analysis. Spiegelman and Kelemen [2003] explored the geochemical consequences of
channelised melt transport, and this was extended to the uranium-series elements in Elliott
and Spiegelman [2003]. Recently there has been some work coming out of the group of Yan
Liang, such as Liang et al. [2010]. Liang and Parmentier [2010] represents a different approach,
that takes channels for granted and parameterises them as a second porosity field with different
permeability properties. This is somewhat similar to the work of Jull et al. [2002].

There are also some laboratory experiments that are relevant here. Analogue experiments
include Kelemen et al. [1995b], and experiments on real rocks include Morgan and Liang [2003]
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Figure 21: A suite of simulations for different values of Da and PeC . Times are shown for each
panel. NW-SE diagonals on this figure have equal values of DaPeC . Figure from Spiegelman et al.
[2001].
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and Morgan and Liang [2005].

9 Tectonic-scale models with equilibrium thermochem-

istry

We began these notes with a discussion of plate-boundary volcanism and asked about the source
regions that feed magma to these volcanos. So far, however, our models haven’t looked much
like plate-tectonic boundaries. To come back to our initial goal, we return to the familiar ground
of thermodynamic equilibrium. We’ll make use of the Enthalpy method to calculate melting
and porosity in a two-phase model of a mid-ocean ridge. In this section we will rely heavily on
numerical models, the implementation of which will not be discussed. Further details can be
found in the references. Dimensional values of model parameters are given in Table 1.

Quantity symbol range considered preferred value units
Half-spreading rate U0 0.5 – 7 3 cm/yr
Ridge-migration rate Um 0.5 – 7 U0 cm/yr
Permeability const. K0 10−8 – 10−6 10−7 m2

Permeability exponent n 3
Mantle shear visc. const. η0 5× 1017 – 8× 1019 1018 Pa-s
Reference viscous temp. Tη0

† ◦C
Activation energy E∗ 3× 105 J-mol.−1

Viscosity constant λ 27
Mantle bulk visc. const. ζ0 1018 – 4× 1019 2× 1019 Pa-s
Magma viscosity µ 1 Pa-s
Boussinesq density ρ 3000 kg-m−3

Boussinesq density diff. ∆ρ 500 kg-m−3

Spec. heat capacity cP 1200 J-kg−1-K−1

Thermal diffusivity κ 10−6 m2-s−1

Coef. thermal exp.‡ α 3× 10−5 K−1

Latent heat L 4× 105 J-kg−1

Chemical diffusivity D 10−8 m2-s−1

Potential temperature T0 1375 ◦C
Reference melting temp. T0 1292 ◦C
Clapeyron slope γ 60−1 GPa-K−1

Composition diff. ∆C 0.1 wt. frac.
Solidus, liquidus slope MS , ML 400 K-(wt. frac.)−1

Table 1: Dimensional parameters used in the model and their preferred values. Footnotes: †The
value of this parameter is chosen such that η = η0 for potential temperature Tm, composition C0,
and zero porosity, at the depth given by eq. (131). ‡The coefficient of thermal expansion is used to
calculate the adiabatic temperature gradient but is not used in calculating variations in density for
buoyancy terms.

To model melting and melt transport at a mid-ocean ridge, we need employ the full system
of partial differential equations, with few or no further simplifications. Putting these together
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into one system, in non-dimensional form we have

∇· vm =
P
ξ
, Continuity equation, (152a)

−∇· (φn∇P) +
P
ξ

= ∇·
[
φn(∇P − k̂)

]
, Compaction equation, (152b)

∇P = ∇· η
(
∇vm + ∇vTm

)
+ φk̂, Stokes equation, (152c)

∂H

∂t
+ eAz∇· vθ = S∇· (1− φ)vm + Pe−1

T eAz∇2θ, Conservation of energy, (152d)

∂Θ

∂t
+ ∇· vΘ = Pe−1

C ∇· φ∇Θf , Conservation of species mass. (152e)

And we have an algebraic relation for the magma velocity,

φ(vf − vm) = −φn
(
∇P + ∇P − k̂

)
, Darcy’s law. (152f)

In this system of equations, we have taken φ0 = 1 for simplicity of presentation, and without
loss of generality.

This is a system of 4 + 2ND equations for 4 + 2ND principle variables,

Principle variables: P , P,H,Θ,vm,vf .

We need closure conditions for the rest of the symbols, including

Closure variables: φ, θ,Θm,Θf , ξ, η

and, of course, there is a set of dimensionless numbers that come from our choice of problem
parameters

Dimensionless numbers: A,S,PeT ,PeC .

The thermodynamic closure variables φ, θ,Θf ,Θm come from the Enthalpy method, and
depend only on dimensionless enthalpy H, bulk composition Θ, and lithostatic pressure G−1z.
The Enthalpy method is given by the algebraic system

φ =





0 when H ≤ Θ−G−1z (subsolidus),

1 when H ≥ Θ−G−1z + 1 + S (superliquidus),
H−Θ+G−1z

1+S otherwise.

(153a)

θ̃ = H − φS using the porosity from above, (153b)

Θm = Θ + φ solidus constraint, (153c)

Θf =M (Θ + φ)− 1 liquidus constraint, (153d)

θ = e−Az(θ̃ + θ∗)− θ∗ definition of potential temperature. (153e)

Here we have added the additional dimensionless numbers M, θ∗, and G.
The viscosities are calculated with constitutive relations (in dimensional form)

η = η0 exp

[
E∗

R

(
1

T
− 1

Tη0

)
− λφ

]
, (154a)

ζ = ζ0φ
−1 exp

[
E∗

R

(
1

T
− 1

Tη0

)]
, (154b)

ξ = ζ − 2η/3. (154c)
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Here both the bulk and shear viscosity obey an Arrhenius law in their dependence on tempera-
ture; A is an amplitude coefficient, E∗ is an activation energy, R is the universal gas constant,
T is temperature. λ is a porosity weakening coefficient. The φ−1 can be obtained through a
variety of different lines of reasoning, none of which are explained here (but see references). Ex-
amination of these constitutive laws for viscosity indicates that both η and ζ decrease sharply
with temperature, and both decrease with increasing porosity. When φ ≈ 0.01, we can see that
ζ � η.

9.1 Magma genesis and transport beneath mid-ocean ridges

We solve the assembled system of equations numerically, on a rectangular domain that is ori-
ented vertically, perpendicular to the ridge axis. The domain can encompass both flanks of
the ridge or, if we assume symmetry between the flanks, it can include just one of them. In
this case, all variables have reflection boundary conditions (e.g. ∂H/∂x = 0) on the left side
of the domain, as indicated in Figure 22. On the top surface of the domain, we impose the
plate spreading velocity vm = U0î + 0k̂, with temperature T = 0◦C. The right boundary is an
outflow boundary, which uses a mixture of reflection and dirichlet conditions (e.g. P = 0). On
the bottom boundary we impose zero shear stress, σxz = η(∂W/∂x+ ∂U/∂z), and give inflow-
ing mantle a chosen composition C0 and mantle potential temperature T0. The temperature
conditions are imposed by calculating the corresponding dimensionless bulk enthalpy H with
φ = 1.

Figure 22: Schematic illustration of
the computational domain for a half-
ridge simulation. The ridge axis is
above the top-left corner of the do-
main. The left boundary has re-
flection boundary conditions, based
on the assumed symmetry across the
ridge axis. The right boundary
has outflow conditions, the bottom
boundary has inflow conditions fixed
mantle potential temperature. The
top boundary has the imposed plate
velocity and cold surface temperature.
[Katz, 2008]

Figure 23 shows a representative example of a mid-ocean ridge simulation after 1 Ma of
simulated time. The half-spreading rate, in this case, was U0 = 4 cm per year, which is
moderate to fast, in terms of the global range of spreading rates. The inverted white triangle
on the top of each panel shows the distance the plate has moved since the beginning of the
simulation. The simulation has reached an approximate steady state.

Panel (a) shows the temperature field in colour. Note the usual t1/2 thickening of the thermal
boundary layer as the plate moves away from the ridge axis. The white line is the outline of the
partially molten region. Here the mantle is upwelling and above its pressure-dependent solidus
temperature. As it upwells, it melts to progressively large degree. The black lines are contours
of melt fraction F = (Cm−C0)/(Cm−Cf ), going from 1% at the bottom of the melting region
upward with an interval of 2.5%, up to around 23% melting at the top of the melting region,
and spreading outward due to advection of the residue of melting by mantle flow.

Panel (b) show streamlines of the mantle flow, indicating upwelling beneath the ridge, that
turns into lateral spreading with distance. The is a small downwelling component visible in
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Figure 23: Output from a representative mid-ocean ridge simulation after 1 Ma. The half-spreading
rate is 4 cm/yr, the permeability is given by K = 10−7φ3, viscosity parameters are η0 = 1018, ζ0 =
1019 Pa-sec, the potential temperature is 1375◦ C, and melting begins at about 60 km depth. Other
parameter as in Table 1. The white triangle shows the spreading distance since t = 0. Panel contents
as labeled; see main text for further details. Figure from Katz [2010].
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the streamlines, making it different from the canonical corner-flow solution; this is due to the
contribution of buoyancy forces (ρgk̂ in equation (20)) that drive convective upwelling within
the melting region, and downwelling on its flank. This contribution is examined in more detail
below. The upwelling drives melting, and colours in this panel show the melting rate, which is
largest where upwelling is strongest. At the top of the melting region there is a strip of blue
colours, indicating freezing of magma. This occurs as the rising magma interacts with the cold
thermal boundary layer in the lithosphere. The freezing closes the pore-space and creates a
permeability barrier.

Panel (c) shows the effect of this permeability barrier on the flow of magma. Dashed lines
are magmatic streamlines. Magma rises vertically through the melting region under the force
of buoyancy, through most of the melting region. Note that the viscous shear stresses that
we considered in section 5 are ineffective at focusing the magma to the ridge axis because η
is much smaller than 1021 Pa-sec. The streamlines are bent toward the ridge axis as they
approach the permeability barrier. There, compaction stresses deflect the magma and cause it
to rise “uphill” along the barrier, as hot air would rise along the underside of a sloped roof. The
colours in this panel show the log10 of porosity. Dark blue represents porosities of 10−3 = 0.1%
or smaller. Dark red represents φ = 10−1 or 10% porosity. It is evident that the channel
beneath the permeability barrier is high porosity. This is because it is being fed by the broad
melting region below, and because the melt moving through is driven only by the component
of gravity that is resolved onto the channel slope, which is relatively small. All of the white
streamlines are focused to the ridge axis, while the black streamlines are not. This indicates
that melt focusing along the permeability barrier may efficiently transport magma from far out
on the flanks of the melting region; only the most distal melts are frozen back into the mantle.

Panel (d) shows the compaction length, as computed with dimensional variables, at each
grid point in the domain, according to

δ =

√
K(ζ + 4η/3)

µ
,

≈
{
ζ0K0φ

n−1

µ
exp

[
E∗

R

(
1

T
− 1

T0

)]}
, (155)

when φ � 1 and ζ0 & η0. Using φ ≈ 0.01, T ≈ T0, and ζ0 = 1019 we find that δ ≈ 10 km.
As the porosity increases with height through the melting region, the associated increase in
permeability dominates over the decrease in bulk viscosity, and the compaction length increases.

Panels (e) and (f) show characteristics of the magma extracted from the domain through
a “dike” beneath the ridge axis, as a function of simulated time. The crustal thickness is
simply calculated as the volume-flux of magma through the sub-ridge dike, divided by the
half-spreading rate. There is a transient phases at the beginning of the simulation, when the
system “spins up” and adjusts to the initial condition. It then settles into a stable crustal
thickness of about 7 km. This is consistent with mid-ocean ridges at this spreading rate
(but the phase diagram and Clapeyron slope are calibrated to achieve this). The crustal
degree of melting is computed using the aggregated melt composition as it enters the dike:
Fcrust = (Ccrust−C0 + ∆C)/∆C. It reaches its steady value of ∼20% rapidly and remains there
with time, showing little or no correlation with the fluctuations in crustal thickness.

The discussion above considered a “representative” simulation, but just how representative
is it? How does the system behave under different parameter values, that are still within
the limits of our uncertainty of their value within the Earth? The parameter space of the
model is very large, but some simple and interesting behaviour can observed with a couple of
key parameters. To explore the effects of these parameters, we simplify the above model by
discarding the buoyancy term in the Stokes equation (152c). Mantle flows calculated without
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this term are called “passive,” while those calculated with buoyancy are called “active.” The
example in Figure 23 is an active flow.

Permeability The permeability law that is used in the current simulations contains two
parameters, K0 and n; here we consider the effect of K0. K0 is a scale factor that is proportional
to the square of the grain size. Grain size is highly uncertain for the mantle, and hence we
have rather broad bounds on K0. One of them comes from seismic tomography (e.g. the MELT
survey): we expect that the porosity in the mantle beneath ridges is of order 1%. Hence
our choice of permeability should be roughly consistent with this estimate. Crustal thickness
provides another bound: we know the approximate melt fraction and productivity beneath
ridges; given this, too small a permeability would lead to crustal thickness that is smaller than
expected. Figure 24 shows the effect of variations in permeability in panels (b), (c), and (d).
Panel (b) examines the travel-time of magma to the ridge axis as a function of lateral distance,
for different values of K0; (c) plots the variation in porosity at 30 km depth as a function of
K0, and (d) illustrates the dependence of melt-focusing efficiency on K0.

Bulk viscosity The bulk viscosity is very poorly constrained parameter that plays an im-
portant role in determining the style and efficiency of melt extraction. It sets the compaction
length, and affects the way that melts interact with the cold thermal boundary layer above the
melting region. In the simulations that are analysed in Figure 24, the bulk viscosity is given
by the function ζ = ζRη0/φ, where ζR is the ratio of the reference bulk viscosity to the shear
viscosity. Panel (a) compares two runs with different values of ζR that are otherwise identical,
and shows that qualitatively, the bulk viscosity plays an important role is the deflection of mag-
matic streamlines to the ridge axis. When it is small, magma can modify the thermal structure
of the lithosphere, and pool along the permeability barrier. This magma will eventually freeze
into the lithosphere, leaving its trace in the fertility of the rock. Panel (c) shows that far from
the permeability barrier, the bulk viscosity plays almost no role in determining the porosity.
Panel (d) shows that the fraction of melt that arrives at the ridge axis is a strong function of
the bulk viscosity, which can be understood in terms of the processes evident in the bottom
part of (a).

9.2 Porosity-driven convection

In our exploration of the effect of varying permeability and bulk viscosity pre-factors, we con-
sidered only passive mantle flow, explicitly excluding the effects of buoyancy driven convection.
We now return buoyancy to its rightful place, and consider the possibility that the porosity
created by melting could drive convection beneath a mid-ocean ridge. Magma is less dense
than the mantle, which is why it rises; a partially molten chunk of mantle should therefore
be less dense than an unmolten one, all else (temperature, composition) being equal. We see
this in the buoyancy term of dimensionless equation (152c), φk̂. Larger porosity means more
buoyancy. We can generalise this by returning to the dimensional equation (20) and considering
the body-force term, −ρgk̂. Expanding ρ,

ρ = (1− φ)ρm + φρf ,

= (1− φ)ρm0(1−Bm) + φρf0(1−Bf ), (156)

where ρm0, ρf0 are reference densities, and Bm, Bf are buoyancy terms given by the linear
density model of thermal and solutal expansion,

Bi = α(T − T0) + β(Ci − C0), (157)
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Figure 24: Figures showing the effect of varying the permeability and bulk viscosity pre-factors
(ζR = ζ0/η0). (a) Steady state conditions for two simulations with K0 = 10−7 m2 and different
values of ζ0. In the top panel, ζR = 100, while in the bottom panel, ζR = 25. The porosity scale
is clipped; φ = 9% within the pool of melt that has formed beneath the lithosphere. (b) Travel
time of magma to the ridge axis from 54 km depth, as a function of the lateral distance from the
ridge axis, from a simulation with K0 = 10−7 m2 and ζR = 100. Dashed lines are travel times along
instantaneous streamlines, which should approximate the paths of magma parcels, if the solution is
in steady state. (c) The porosity at 30 km depth in 1D column models, as a function of K0, for
different values of ζ0. The heavy dashed curve is a theoretical prediction from equation (138). (d)
The efficiency of focusing for a suite of 2D models with various K0 and ζ0. Efficiency is the fraction
of melt extracted at the ridge axis divided by the fraction produced by melting. Each point is an
average over time. Panels from Katz [2008]
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where i can take values of m or f for the matrix or magma. Equation (157) states that both
phases individually vary in density according to their temperature and composition relative to
some reference value. Equation (156) states that these density variations combine in proportion
to the phase fraction to give the bulk density. Various authors (see references) have considered
the effect of thermal and compositional buoyancy; we leave those aside for the moment, take
the phase densities to be constant (Bi = 0), and investigate the role of porosity acting on a
constant density difference ρm − ρf = ∆ρ.
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Figure 25: Convective vigour as a function of the vigour parameter(s). The y-axis represents the
enhancement to upwelling caused by buoyancy. A value of y = 1 represents unenhanced, pure passive
flow. Each point represents a single simulation that was run to steady-state. Point colour represents
half-spreading rate. Lines are fit by finding the nonlinear least-square error over parameters a and b
of y = 1+axb. (a) Data plotted in terms of the approximated vigour parameter VU . The agreement
between the fit and the data indicates that this approximation is valid over a broad range of VU ,
though it modifies the exponent b in the fit. (b) Data plotted in terms of the full vigour parameter
V. The upwelling rate W0 has been obtained from the simulations themselves, after the fact. Figure
from Katz [2010].

This assumption brings us back to the Stokes equation as written above in (24). Let’s
conceptually divide our domain into two regimes: the plate regime, where viscosity is high
enough to suppress deformation; and the mantle regime, where viscosity is low enough to
promote it. If we assume that the viscosity is approximately constant within the mantle regime,
we can bring η outside of the divergence operator,

∇P = η∇2vm − φ∆ρĝ.

Defining a mantle vorticity as ωĵ = ∇× vm and taking the curl of this equation gives

η0∇2ω = ∆ρg
∂φ

∂x
, (158)

which states that lateral gradients in porosity place a torque on the mantle and represent an
internal source of vorticity (i.e. convection). There is an important external source of vorticity:
the boundary condition of spreading plates. To determine the relative importance of these two
effects, we can perform a scaling analysis on (158). First rescale variables with characteristic
scales

[x] = h0, [φ] = φ0, [ω] = U0/h0, (159)
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where h0 is the height of the melting column. Substitution and reshuffling gives, in terms of
dimensionless variables

∇2ω = V ∂φ
∂x
, with V =

∆ρgφ0h
2

η0U0

, (160)

where V , the vigour parameter, is a dimensionless number analogous to the Rayleigh number
in thermal convection. We can use our solution for φ from the 1D column model (eqn. (138))
to obtain an estimate for φ0 in terms of other parameters,

φ(z) ≈
[
µW0F

K0∆ρg

]1/n

. (161)

Taking F0 as some representative value of the degree of melting, and for n = 3, and substituting
back into (160) gives

V = [∆ρg]2/3
[
µW0F0

K0

]1/3
h2

0

U0η0

. (162)

Unfortunately, the upwelling rate at the base of the melting column W0 is determined by the
vigour of convection, and hence we don’t know it a priori. We can estimate W0 ≈ U0, which
will only be true for moderate to small values of V , but allows us to move forward. Doing so
gives

VU =

[
∆ρg

U0

]2/3 [
µF0

K0

]1/3
h2

0

η0

. (163)

This dimensionless number predicts how the relative importance of active upwelling scales with
problem parameters. When V � 1, we’d expect the mantle flow to be driven mostly by plate
spreading, whereas when V � 1, we’d expect a significant contribution from buoyancy. It
is important to note that upwelling will occur regardless of the size of the vigour parameter,
because it will be driven by the larger-scale convection of the mantle, which drives plate tectonics
and hence the divergence of plates at a mid-ocean ridge.

The utility of the vigour parameter for describing the dynamics of simulations can be demon-
strated without difficulty. A suite of simulations with values for U0, η0, K0, and ∆ρ are sum-
marised in Figure 25. They are plotted on the basis of their predicted vigor parameter (VU in
panel (a) and V in panel (b)) on the x-axis, and the enhancement to upwelling on the y-axis.
The enhancement to upwelling is computed as the maximum upwelling rate in the domain
(which is always found beneath the ridge axis), divided by the upwelling rate that would be
expected for passive spreading (which is given by 1.4U0). Evidently, for small values of V ,VU ,
there is no enhancement by buoyancy, while for large values, buoyancy becomes increasingly
important. In fact, the contribution of buoyancy scales almost linearly with V , as shown by
the fit in panel (b), which is given as y = 1 + axb, with a and b constants that are given in the
figure caption.

What effect does active flow have on crustal production and melt fraction? An answer
is given in Figure 26. Panel (a) plots crustal thickness as a function of half-spreading rate,
compared with a global data set. The data show a sharp increase for small values of spreading
rate, then a slight decline with spreading rate. The curves are simulation results, coloured by
the viscosity pre-factor that was imposed. Since the vigor parameter depends on both η0 and
U0, there are variations in the vigor of convection between and within these curves (the latter
is shown in panel (c)). Larger viscosity leads to passive-like flow, and these curves are marked
by a gradual increase with spreading rate, and no decrease. Conversely, for smaller values of
η0, we see a sharp increase that mirrors the data, then a gradual decrease that may also be
consistent. The trend with spreading rate is more important than the absolute value of the
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Figure 26: Output from ridge mod-
els that have reached steady state,
as a function of the half-spreading
rate and the viscosity pre-factor. (a)
Crustal thickness predicted by a va-
riety of model runs. The diamonds
are observational data of the global
ridge system, compiled by White et al.
[2001]. (b) Crustal degree of melt-
ing, computed as Fcrust = (Ccrust −
C0 + ∆C)/∆C. (c) The upwelling
enhancement factor over passive flow.
Figure from Katz [2010].

curves, as they can shift up and down depending on other uncertain parameters, such as the
potential temperature and fertility of the mantle.

Panel (b) shows that although the volume of melt produced may change with the vigor of
convection, the degree of melting remains nearly constant. This is because degree of melting is
primarily sensitive, in this model, to the height of the melting column (see eqn. (136)), whereas
the melting rate is sensitive to the mean upwelling rate (see eqn. (115)).

Panel (c) plots the enhancement of upwelling over passive flow. There is little or no en-
hancement when the viscosity is large (and the vigor parameter is small). At smaller viscosities,
we see an increase in Wmax/(1.4U0) with spreading rate, then a gradual decrease. The decrease
is unsurprising, given the way that U0 enters into the expression for V ; the increase is due to an
implicit effect: the height of the melting column h0 depends strongly on U0 for small spreading
rates.
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9.3 Reactive and mechanical instabilities in equilibrium ridge mod-
els?

We saw that reactive flow in disequilibrium models leads to channelised melt flow under some
circumstances, and we saw geological evidence of channelised melt flow in the mantle, from the
Oman ophiolite. The simulations in this section, however, haven’t produced channels. Why
not?

The reasons for this are only becoming clear now, but it appears that there is an important
difference when models include conservation of energy. It turns out that channellisation is still
possible, but it requires a melt-supply from below to become active. But if the bottom of the
melting column is where melting begins, how could there be melting from below? Well, in a ho-
mogeneous mantle, there wouldn’t be any melt introduced from below. But in a heterogeneous
mantle, fertile blobs of recycled continental crust may upwell beneath ridges and hot-spots, and
melt at much greater depths than the ambient mantle. So when the ambient mantle begins to
melt, it could receive be fed from below by pulses of magma coming from highly molten fertile
blobs. This would nucleate channels, as we shall see in the slides.
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Figure 27: Two ridge simulations
with ±0.6% white noise in the bulk
composition field, λ = 90, and ξ0 =
1019 Pa-sec. The left column has η0 =
1019 Pa-sec (V = 10) and the right col-
umn has η0 = 1018 Pa-sec (V = 96).
(a) and (d) show the log of poros-
ity in colour and magmatic stream-
lines. (b) and (e) show the second
invariant of the strain rate tensor ε̇II
and the mantle streamlines. (c) and
(f) show the log value of a dimension-
less number that represents the ra-
tio of buoyancy forces to compaction
stresses, Bu = ∆ρgδ/[(ζ + 4η/3)γ̇].
Figure from Katz [2010].

What about porosity bands caused by shearing of the mantle? Just because these form
under the very high strain rates in the laboratory (∼ 1× 10−4 sec−1) doesn’t necessarily mean
that they will form under the lower strain rates in the mantle (∼ 1× 10−14 sec−1), where there
are other forces at play. In the mantle, gravity (and buoyancy) is expected to dominate over
other stresses in driving melt flow. Furthermore, the total strain accumulated by a parcel of
mantle as it flows through a ridge system is of order 1, not clearly enough to produce banding.
The ridge model shown above uses a shear-viscosity law that is porosity weakening (eqn. (154)),
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and hence does not exclude the possibility of porosity band formation, yet bands do not appear
in simulations with a homogeneous mantle.

To probe further, we can consider a slightly heterogeneous mantle, and exaggerate the
sensitivity of viscosity to porosity by choosing λ = 90, a factor of three larger than empirical
estimates. The results of two ridge models with these parameter are shown in Figure 27. Clearly
no porosity bands have developed due to shear.

Further reading There isn’t much of a literature on tectonic-scale solutions to the full, two-
phase dynamics with energy. Recent work is limited to Ghods and Arkani-Hamed [2000], Katz
[2008], and Katz [2010], though a related set of papers by Šrámek et al. [2010] and Ricard et al.
[2009] on molten metal segregation from the mantle into the core are relevant. There is also
Spiegelman [1996] and Spiegelman and Reynolds [1997], which examine ridge-scale convection
driven by buoyancy, and the consequences for geochemical transport.

Other work on ridge-scale convection includes Buck and Su [1989], Scott and Stevenson
[1989], Parmentier and Morgan [1990], Su and Buck [1993], Sparks and Parmentier [1993], Jha
et al. [1994], Choblet and Parmentier [2001].

A very important paper on magmatic focusing through a sub-lithospheric channel beneath
mid-ocean ridges is Sparks and Parmentier [1991]. An excellent discussion of channellisation in
equilibrium and disequilibrium models is given by Hewitt [2010].
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