

2240-21

Advanced School on Scaling Laws in Geophysics: Mechanical and Thermal Processes in Geodynamics

23 May - 3 June, 2011

DEEP CONVECTION II (Compressible Mantle Convection)

Shijie ZHONG

Department of Physics University of Colorado, Boulder Colorado U.S.A.

Compressible mantle convection

Shijie Zhong

Department of Physics University of Colorado Boulder, Colorado USA

ICTP Advanced School on Scaling Laws in Geophysics 6/3, 2011

Compressible convection with different Di (Jarvis and McKenzie, 1981)

(a)

Di's effect on Tave

$\Phi/Fs = Di$ for large Ra and basal heating convection (Hewitt et al., 1975)

Effect of adiabatic heating/cooling on plume excess temperature and plume buoyancy flux

As plumes rise, they cool due to adiabatic cooling effect (expanding at smaller pressure).

How does it affect plume dynamics?

Adiabatic temperature gradient and temperature (Leng and Zhong, JGR, 2008)

$$\frac{dT_{ave}}{dr} = -\frac{\alpha gT_{ave}}{C_p},$$

$$\frac{dT_{ave}}{dr} = -\gamma D_i (T_{ave} + T_s),$$

$$D_i = \frac{\alpha ogd}{C_p}, \quad \gamma = R_e/d$$

$$T_{ave} + T_s = Ae^{-\gamma D_i r},$$

$$\Delta T_{plume} = T_p - T_{ave} = (B - A)e^{-\gamma D_i r}.$$

$$\frac{\Delta T_{plume}(r_1)}{\Delta T_{plume}(r_2)} = e^{\gamma D_i (r_2 - r_1)}.$$

$$\frac{Q(r_1)}{Q(r_2)} = e^{\gamma D_i (r_2 - r_1)}.$$

Effect of adiabatic heating/cooling on plume excess temperature and plume buoyancy flux

Plume buoyancy flux = CMB heat flux?

Conclusion

- Compressible mantle convection may be important for plume dynamics for the Earth.
- Pressure-dependent buoyancy is important for balancing the viscous dissipation and adiabatic heating.

 $\Box \Phi/Fs = Di(1-1/2\xi)$ for large Ra.