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Constant viscosity convection at different Ra 
(3e6, 1e7, 3e7 and 1e8)



Constant viscosity convection at different Ra 
(3e4, 3e5, and 3e6)



A scaling analysis for plume populations
(Zhong, 2005)



Scaling for plume vertical velocity and radius 

force balance for a plume:

For =1/3 and n=0, the exponents for plume 
radius and velocity are -2/9 and 7/9, respectively.













For =1/3 and n=0, the exponents for plume radius and velocity are 
predicted to be -2/9 (~-0.222) and 7/9 (~0.777), respectively.



African and Pacific Superplumes
-- Spherical harmonic degree-2 Structure

Shear-wave anomalies at 2300 km depth from S20RTS 
[Ritsema et al., 1999]

Degree-2 structure: 
Dziewonski et al. [1984], van der Hilst et al. [1997], Masters et al. [1996, 
2000], Romanowicz and Gung [2002], and Grand [2002].

Spherical harmonic functions Ylm()

Long-wavelength geoid (degrees 2-3)



Supercontinent Pangea (330 -- 180 Ma)

[Smith et al., 1982, and Scotese, 1997]
[Li et al., 2008; Hoffman, 1991; Dalziel, 
1991; Torsvik, 2003].

750 Ma

and Supercontinent Rodinia (900 -- 750 Ma)



A couple of first-order questions

1. Why should a supercontinent form? Why are 
supercontinent events cyclic? 

2. How do we understand the present-day seismic 
structure (e.g., two antipodal African and Pacific slow 
anomalies) and supercontinent events in a general 
framework?

Thermal convection in the mantle is the 
key to all these questions. 



Thermal convection in the mantle

Gurnis [1988]

But …

Degree-1 flow?



Degree-1 or hemispherically asymmetric structures 
for the other planetary bodies?

Surface topography on Mars Icy satellite Enceladus

Crustal dichotomy



How to generate degree-1 mantle convection? 
-- the effect of a weak upper mantle
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Constrained by postglacial rebound 
and gravity observations [Hager, 
1991; Mitrovica et al., 2007]

Mantle viscosity depends on temperature (T), stress ( and pressure (P). 

=An-1exp[(E+PV)/RT]. 
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=rexp[E(0.5-T)] 

Degree-1 mobile-lid convection 
with realistic mantle viscosity
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A Rayleigh-Taylor analysis

Zhong and Zuber, 2001



Movie 1: Evolving to degree-1 convective structure 
[Zhong et al., 2007]

Independent of Ra, heating mode, & initial conditions. 

lith>~200um
& lm~30um

Viscosity: 
(T, depth).
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Cause supercontinent formation over the downwelling?



Degree-1 or hemispherically asymmetric structures 
for planetary bodies?

Surface topography on Mars Icy satellite Enceladus

Crustal dichotomy

Tharsis



Movie 2: A supercontinent turns initially degree-1 to 
degree-2 structures



Conclusion

• For isoviscous convection, convective 
wavelength (plume population) is mostly 
constrained by thickness of the layer, and 
is independent to Ra.

• Convective wavelength and planform are 
significantly affected by radial viscosity 
structure. This important problem is not 
well understood.


