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FIG. 1: Left: a particle scattering off of an external potential. Right: Two particles scattering.

I. KINEMATICS

Let’s begin by reminding ourselves of what we all learned back in ordinary quantum

mechanics. If we want to study a potential V (�x) by scattering some kind of particle a

off of it, we prepare a beam of particles with four-momentum pa, and measure their out-

going (scattered) four momenta p1 (see Figure 1a). The 4-vector Q ≡ p1 − pa describes the

momentum transfer in each reaction, and the amplitude for scattering for a given Q is given

by the Fourier transform of V :

A(Q) ∝
∫

d3�xei�q·�xV ((�x) . (1)

Since large values of |�q| correspond to small distance structure, the large |�q| events provide

information about small structure in V .

Most often in particle physics, we are more interested in the short distance physics of

another particle. We can replace V (x) with another particle b, and study the 2 → 2 reaction,

pa + pb → p1 + p2 , (2)

(see Figure 1b) in which case we simultaneously study the short distance behavior of both a

and b in the large Q ≡ p1 − pa regime. In fact, particles 1 and 2 need not even be the same

as a and b, so for high enough energies we may succeed at producing new particles we have

never seen before. In any case, energy-momentum conservation implies,

pa + pb = p1 + p2 . (3)
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It is easy to choose any coordinate system we like by applying Lorentz transformations to

all four of the momenta. In practice, a convenient choice is the center of momentum (CoM)

frame, in which �pa = −�pb. Since these momenta define a line (and nothing in the initial

state distinguishes anything going on in the transverse directions1, we can always choose the

axis defined by �p to be the ẑ-axis. In this case, we can write the 4-momenta of the incoming

particles,

pa ≡ (Ea, 0, 0, p)

pb ≡ (Eb, 0, 0,−p) (4)

where Ea ≡ √
p2 + m2

a and Eb ≡
√

p2 + m2
b so the particles are on-shell. An important thing

to notice is that the quantity p completely specifies the momenta of the initial state (if our

particles have spins we should also define those somehow). We can encode this information

in a Lorentz-invariant way by defining Mandelstam s,

s ≡ (pa + pb)
2 = (p1 + p2)

2 = (ECoM
a + ECoM

b )2 (5)

where the second equality follows from energy conservation and the last emphasizes that

these are related to the initial energy in the center of mass frame. That final expression

makes it obvious that s ≥ (ma + mb)
2 and it should also be clear that s ≥ (m1 + m2)

2.

Now let’s discuss the final state particles 1 and 2. In the CoM frame, they must have

equal and opposite spatial momenta, since pa+pb has only a time-component by construction

in that frame. We can always choose our x̂-axis to lie in the plane formed by �p1 and �pa, and

we can write the four-momenta as,

p1 ≡ (E1, p
′sθ, 0, p

′cθ)

p2 ≡ (E2,−p′sθ, 0,−p′cθ) (6)

where E1 ≡
√

p′ 2 + m2
1 and E2 ≡

√
p′ 2 + m2

2 and I have introduced the short-hand notation

sθ ≡ sin θ and so on. Energy conservation tells us that E1 +E2 = Ea +Eb, or written out as

functions of p and p′, that the magnitude p′ is determined entirely by p and the four masses.

Thus, p′ will always be the same in a 2 → 2 reaction involving the same particles and fixed

p.

1 Including spins! Since we can measure at most one component of the spin (if any) of a and b, we can
choose the spin measurement axis to also be the ẑ-axis.
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We can encode the dependence on the scattering angle θ in a Lorentz invariant,

t ≡ (p1 − pa)
2 = (pb − p2)

2 = m2
1 + m2

a − 2p1 · pa

= m2
1 + m2

a − 2(ECoM
a ECoM

1 − pp′ cos θ) . (7)

Needless to say, if we know s and t, we know everything about the momenta involved in a

2 → 2 reaction. Notice that t = Q2 from our earlier discussion, and it tells us about the

4-momentum transfer.

The physical range of t can be easily determined by remembering that −1 ≤ cθ ≤ +1.

Thus, we have:

t1 ≤ t ≤ t0 , (8)

where,

t0,1 =

(
m2

a − m2
1 − m2

b + m2
2

2
√

s

)2

− (p ∓ p′)2. (9)

For very high energy reactions (all energies much larger than all masses):

pa → (
√

s/2, 0, 0,
√

s/2)

pb → (
√

s/2, 0, 0,−√
s/2)

p1 → (
√

s/2,
√

s/2sθ, 0,
√

s/2cθ)

p2 → (
√

s/2,−√
s/2sθ, 0,−

√
s/2cθ)

and the limits on t become t0 → 0 and t1 → −s. This helps make it clear why we need high

energies to probe short distances: it is not enough to have high energy (large s), but we

need high energy to reach large values of t, for which we have wide angle scattering which

probes short distances.

Before closing the section on kinematics, I should mention that some people define a third

Mandelstam invariant,

u ≡ (p1 − pb)
2 = (pa − p2)

2 . (10)

Since it is redundant with s and t, we have a relation among the three:

s + t + u = m2
a + m2

b + m2
1 + m2

2 . (11)
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II. CROSS SECTIONS

If we are looking for events of some kind, we can write the rate at which they occur in a

way which is independent of how we prepare the initial particles going into the reaction in

terms of the cross section σ,

N = σ L ε (12)

where N is the number of events observed, σ is the cross section for the reaction, typically

measured in barns (1 bn = 10−24cm2) or GeV−2. L ≡ ∫
dtL is the integrated luminosity,

which represents how much collision data was collected, and can be expressed in barn−1 or

GeV2. Finally, ε is a dimensionless number that represents the fact that particle detectors

typically have a limited efficiency to record every particle produced. In practice, ε is some-

thing the experimentalists need to determine for themselves (and then tell to the world when

they commission their detectors). L is determined by how long the accelerator was running

and collecting data.

To compute a cross section, we compute the matrix element squared (|M|2) for the

quantum transition of interest, and we sum over the allowed final states,

dσ =
1

2s

(
N∏

i=1

d3�pi

(2π)3

1

2Ei

)
(2π)4δ(4)(pa + pb −

∑
i

pi) |M(pa, pb → {pi})|2 (13)

where the first factor corrects for the flux of the incoming massless particles, and the 4-delta

function enforces energy momentum conservation. If our particles have spins, we can specify

them as part of M, or (more often) we cannot prepare the spin of the initial state or measure

the spins of the final state. In such cases, we sum over the final spins and average over the

initial ones. We call the matrix element squared after this operation |M|2. In these lectures,

we will always be interested in these summed/averaged matrix elements.

Note that we wrote dσ in the CoM frame, but it is invariant under boosts along the

beam axis, so we will rarely have to worry about that fact. Also notice that each final

state particle has 3 independent momentum components, for 3N total. Since there are 4

energy-momentum constraints, the total number of independent quantities is 3N − 4. In a

2 → 2 reaction, these would be the θ and φ angles describing the final state momenta, where

we previously ignored φ because we knew the matrix element cannot possibly depend on it.
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III. e+e− → μ+μ−

Let’s think about e+e− → μ+μ−. Since mμ ∼ 200 × me, if we have enough energy to

make muons in the first place, it must be a good approximation to drop me compared to

either mμ or
√

s. So we will treat the electron (but not, for now, the muon) as massless.

Applying our formula for the cross section, Eq. (13)

dσ =
1

2s

|�p1|2d|�p1|
2E1

dΩ1
|�p2|2d|�p2|

2E2

dΩ2δ
(4)(pa + pb − p1 − p2)|M|2 (14)

where dΩi ≡ d cos θidφi and we’ll discuss |M|2 at length later on. For now let’s focus on the

kinematics.

The 3 spatial pieces of the delta function require:

|�p2| = |�p1| ≡ p

θ2 = −θ1

φ2 = π + φ1 (15)

and we can use those three factors to do the d3�p2 integration, with the understanding that

we replace �p2 → −�p1 inside the matrix element as well as in E2, which is now equal to E1

as a result. We arrive at,

dσ =
1

2s

1

(2π)2

p2

4E2
1

δ(Ea + Eb − E1 − E2) |M|2 dΩ1dp . (16)

To use the delta function, it is useful to change the integration over dp into one over dE.

That is easily accomplished by noting that E =
√

p2 + m2, so:

dE =
p

E
dp . (17)

We will also make use of the CoM frame for which Ea + Eb =
√

s. Thus,

dσ =
1

2s

1

(2π)2

p(E1)

4E1

|M|2 δ(
√

s − 2E1)dΩ1dE1 (18)

dσ =
1

32π2s

p(E1)√
s

|M|2 dΩ . (19)

Since φ1 is trivial (|M|2 does not depend on it), we may as well integrate over it, which

physically just means that we will accept any event where e+e− → μ+μ− independently
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FIG. 2: Feynman diagrams at leading order for e+e− → μ+μ− in the Standard Model.

from what value φ1 happens to take. The last thing to notice is that by changing variables

from dp to dE1, p has become a function of E1:

p(E1) =
√

E2
1 − m2 =

√
s

4
− m2 =

√
s

s

√
1 − 4m2

s
(20)

where one often sees the definition β =
√

1 − 4m2/s used in the literature. Altogether, this

leads us to,

dσ

d cos θ
=

1

32πs

√
1 − 4m2

s
|M|2(s, θ) . (21)

Of course, all of the interesting stuff is actually the s and θ dependence of |M|2, and we will

discuss this next.

In the Standard Model (SM), there are two Feynman diagrams contributing to the reac-

tion e+e− → μ+μ− at leading order in perturbation theory (see Figure 2). They correspond

to exchange of a virtual photon (γ∗) or Z-boson, respectively. To start out, let’s take
√

s 
 MZ . In this limit, the Z exchange graph is suppressed compared to the photon

graph, so we can approximate the whole answer as the photon result,

−iM = [ū1ieγ
μv2]

−igμν + ...

s
[v̄bieγ

νua] , (22)

where e is the QED gauge coupling and the ... include terms which drop out in the limit of

zero electron mass. Squared and averaged/summed over initial/final spins, this is:

|M|2 =
e4

s

(
1 + cos2 θ

)
. (23)

Thus,

dσ

d cos θ
=

πα2

2s

√
1 − 4m2

s

(
1 + cos2 θ

)
, (24)
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FIG. 3: Distribution of dσ/d cos θ in e+e− → μ+μ− as well as the dependence of the inclusive cross

section on the incoming energy, σ(s) .

where α ≡ e2/(4π) is the usual fine structure constant. This expression indicates that

muons tend to be produced more in both the forward and backward directions, as shown

in Figure 3a. If we integrate this expression over cos θ, we arrive at the dependence of the

inclusive cross section on the initial energy s,

σ(s) =

∫ +1

−1

d cos θ
dσ

d cos θ
=

4πα2

3s

√
1 − 4m2

s
. (25)

This function is plotted in Figure 3b, which shows the sharp turn-on at s � 4m2
μ and

subsequent fall as 1/s at large energies.

Homework: Derive the θ and energy dependence for production of scalar muons, e+e− →
μ̃+μ̃−. In reality, scalar muons must be heavy enough that it is not a good approximation

to neglect the Z boson, but neglect it anyway. You should find a differential cross section

proportional to sin2 θ.

The results of the exercise illustrate an important point. Though we cannot directly

measure the spin of the final state particles, we can sometimes infer them through the

kinematic distributions. In this case, the key is that the intermediate particle (photon) is

spin-1. As a result, we can track the flow of angular momentum through the two processes:

e+e− → γ∗ → μ+μ−

S = 1 S = 1 S = 1
versus

e+e− → γ∗ → μ̃+μ̃−

S = 1 S = 1 L = 1
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The intermediate photon requires angular momentum J = 1. For ordinary muons, as

fermions, this is most easily realized in the s-wave (L = 0) for an S = 1 spin state. For

scalar muons, there is no spin to make up J = 1, and we are forced to go to an L = 1

(p-wave) configuration.

It is worth mentioning in passing that the process e+e− → hadrons begins at lowest

order at energies far below the Z boson mass with exactly the same photon exchange, with

quarks in the final state (since gluons carry no electric charge they cannot be produced at

lowest order in perturbation theory) instead of muons, and the replacement of the muon

electric charge by the quark charge, effectively multiplying the cross section by
∑

Q2
q, where

Q = +2/3 for the up-type quarks and −1/3 for the down-type quarks. We’ll say more

about this below in Section IV, but for now let’s note an important point: just being able

to produce new particles already can lead us to discover them! In fact, both the charm and

bottom quarks were discovered by looking at the process e+e− → hadrons as a function of

energy. The quantity is defined normalized to the muon rate,

R ≡ e+e− → hadrons

e+e− → μ+μ− , (26)

and effectively just counts the number of quarks we have enough energy to produce, weighted

by their electric charge squared. In Figure 4 we see a plot of experimental data for this ratio,

including the jumps it experiences when the collider has enough energy to produce pairs of

charm or bottom quarks.

Now let’s go back to the Z-exchange diagram. It looks a lot like the photon graph,

with the difference that the Z itself has a non-zero mass and the couplings to electrons and

muons are chiral (meaning: they couple differently to left- and right-handed fermions). We

will assume that the Z couplings to electrons and muons are equal, as is predicted by the

Standard Model and verified to exquisite accuracy [1]. The matrix element is,

−iM = [ū1iγ
μ (gRPR + gLPL) v2]

−igμν + ...

s − M2
Z

[v̄biγ
ν (gRPR + gLPL) ua] , (27)

where PL/R are the left-handed/right-handed projectors and once again the ... refer to terms

that vanish for the massless electrons. We can see from the propagator denominator that

this graph will get very large when s � M2
Z , which will allow us to neglect the photon

contribution for such energies.

In fact, things seem problematic for s � M2
Z – the amplitude not only becomes large,

but seems to be infinite right at M2
Z . Such behavior is obviously unphysical. In fact, it is
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FIG. 4: The ratio of production of hadrons in e+e− annihilations to production of muons, as a

function of the center-of-mass energy, and for a variety of high energy experiments, from [2].

an artifact of our working to leading order in perturbation theory. At the next-to-leading

order, the denominator of the propagator picks up an imaginary part,

G−1(p2) = p2 − M2
Z + iMZΓZ (28)

from diagrams such as those shown in Figure . (That Feynman graph also corrects the real

part of the propagator, and those corrections turn out to be UV divergent, and require both

mass and wave function renormalization – but the imaginary part is finite). The optical

theorem relates the imaginary part of the loop amplitude to the intermediate particles going

onto their mass shells, and thus is guaranteed to produce the actual decay width2. Having

included the imaginary part of the propagator, |M|2 is now proportional to,

|M|2 ∝ 1

(s − M2
Z)

2
+ M2

ZΓ2
Z

, (29)

2 You can find a much more detailed discussion along with many models of resonances discussed in my
lectures at TASI-08 [3]. A copy of these lectures should be posted as supplementary information on the
school website, and can also be obtained from my UCI home page. Note that they are aimed at a slightly
higher level than these lectures!
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FIG. 5: The rate for e+e− → hadrons as a function of the CoM energy, including measurements
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the famous Breit-Wigner function (see figure 5).

The chiral couplings of the Z lead to a more interesting angular dependence:

|M|2 =
s

(s − M2
Z)

2
+ M2

ZΓ2
Z

{(
g2

L + g2
R

)2 (
1 + cos2 θ

)
+ 2

(
g2

L − g2
R

)2
cos θ

}
(30)

which we can use to separately extract |gL|2 and |gR|2 by studying the angular distributions

of the outgoing muons from Z decays. Let’s see how this works.

LEP produced millions of Z bosons through e+e− annihilation. From here, one easy

quantity to derive is the number of Z → μ+μ− decays divided by the number of Z → hadron

decays,

Rμ ≡ e+e− → Z → μ+μ−

e+e− → Z → hadrons
(31)

It is somewhat amusing that Rμ = 1/R in terms of the quantity we looked at before at

lower energies to discover the c and b quarks. Since this quantity accepts muons no matter
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at which θ they are produced, we integrate dσ/d cos θ over cos θ. The term proportional to

cos θ integrates away, and we are left with a prediction for Rμ:

Rμ =
(gμ 2

L + gμ 2
R )∑

q(g
q 2
L + gq 2

R )
. (32)

The second quantity is the “forward-backward asymmetry”, which measures the number

of muons which go forward (cos θ > 0) compared to the number which go backward (cos θ <

0),

Aμ
FB =

NF − NB

NF + NB

(33)

Taking our differential cross section and performing the integrals results in,

Aμ
FB =

3

4

(gμ 2
L − gμ 2

R )

(gμ 2
L + gμ 2

R )

(ge 2
L − ge 2

R )

(ge 2
L + ge 2

R )
(34)

where just to make a point, we have separated out the electron from the muon couplings,

despite their being equal in the SM. We sometimes define the asymmetry

Aμ =
(gμ 2

L − gμ 2
R )

(gμ 2
L + gμ 2

R )
(35)

for which Aμ
FB = 3/4AμAe. We can define a similar Af for any fermion f for which we

can measure cos θ. In practice, this is all three charged leptons, e, μ, and τ , and the heavy

quarks b and c (whose decays into leptons tell us whether we have a heavy quark or a heavy

anti-quark3 experiencing the decay. Obviously the top quark does not arise from Z decays,

but we will see below how to measure a forward-backward asymmetry for it at Fermilab.

Homework: Derive |M|2(e+e− → Z → ff̄) for an arbitrary fermion f . Derive Rf and

Af
FB, and check your predictions for Rb and Ab

FB against their measured values [1].

IV. e+e− → HADRONS

We have already seen the basics of e+e− → hadrons. At lowest order in perturbation

theory, we can compute the rate into qq̄ pairs, and sum over the masses of all of the quarks

accessible at the energy of interest. In practice, we should still worry about a few details:

3 Meson-anti-meson mixing also confuses things a little bit!
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1. Because the QCD coupling strength gS is not very small, we should worry about the

possibility that there could be a reasonably large chance to radiate additional quarks

or gluons which will appear in our description of the final state.

2. Quarks and gluons are not asymptotic states. Because of confinement, they are con-

fined into colorless hadrons which interact with particle detectors.

A. Hadronization

Let’s discuss the second issue first, even though it is somewhat later in our picture of how a

given event evolves from the initial annihilation to being detected. We have perfect evidence

that quarks and gluons are always confined at large distances into hadrons. However, because

this involves QCD at very low scales, the coupling is large and we can’t use perturbation

theory to understand it quantitatively. We can get some information from nonperturbative

numerical simulations (lattice QCD), but even the state of the art is far away from being

able to describe very complicated configurations of partons, such as occur in high energy

collider reactions.

As a result, we have no first principles description of hadronization. To turn a set of

models into a set of hadrons, we have to rely on models (popular computer codes such as

PYTHIA [5] or HERWIG [6] contain different models, and it is worthwhile to remember that

while all of them are reasonable, none of them are really absolutely correct). To discuss a

definite picture, I will consider a “string”-like model, similar to (but not really the same as)

the one used by PYTHIA.

First consider a qq̄ pair, as shown in Figure 6a. Because of confinement, as they are

produced and move away from one another (assuming they have some kinetic energy when

created), a flux tube of gluon field stretches between them and tries to confine them. While

we don’t know much about this process, we can guess that the characteristics of the flux

tube are determined by the scale of nonperturbative QCD, Λ ∼ 300 MeV. In particular, up

to order one numbers we can expect that the transverse sides of the tube are of order ∼ 1/Λ

and the energy density inside the tube is Λ4. Thus, the total energy contained in the string

is:

E ∼ Λ2L (36)
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FIG. 6: Schematic picture for hadronization.

where L is the string length, or in other words, the distance between the q and the q̄.

As the quarks move apart, the string stretches, converting their kinetic energy into the

energy of the flux tube. This can continue either until the quarks run out of kinetic energy,

or there is enough energy stored in the flux of glue to create a q′q̄′ pair. I write these as q′

to emphasize that these could be differently flavored quarks than the ones I started with. In

practice md ∼ mu and ms (and even in most cases mc and mb) is very small compared with

the typical energies we encounter at modern colliders. After the creating the new pair of

quarks, the string “snaps” into two strings, neither of which see any large color charge from

the other, and so continue to evolve independently from one another (Figure 6b). Provided

the quarks at its endpoint still have enough kinetic energy, each string will continue to grow,

and continue to snap into pairs of light quarks when it can. Ultimately, this process will end

when every quark has kinetic energy of order ∼ Λ. At this point, the strings stop growing

and we can identify the resulting hadrons by identifying each string with a meson4. An

(overly simplified) example starting from the initial production of a pair of energetic strange

4 Realistic models will also produce baryons, but this is beyond the scope of our cartoon discussion.
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quarks is shown in Figure 6c.

Moral: We don’t quantitatively understand hadronization. If you are designing a measure-

ment which depends very sensitively on the details of how it happens, you should treat

whatever model you are using with deep suspicion. The differences between competing

hadronization models may be large, and the spread in results they give may not capture

B. Extra Radiation : The Parton Shower

V. HADRON COLLIDERS

VI. CONCLUSIONS AND OUTLOOK
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