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Abstract

These TASI lectures were part of the summer school in 2008 and

cover the collider signal associated with resonances in models of physics

beyond the Standard Model. I begin with a review of the Z boson,

one of the best-studied resonances in particle physics, and review how

the Breit-Wigner form of the propagator emerges in perturbation the-

ory and discuss the narrow width approximation. I review how the

LEP and SLAC experiments could use the kinematics of Z events to

learn about fermion couplings to the Z. I then make a brief survey

of models of physics beyond the Standard Model which predict reso-

nances, and discuss some of the LHC observables which we can use

to discover and identify the nature of the BSM physics. I finish up

with a discussion of the linear moose that one can use for an effective

theory description of a massive color octet vector particle.

1 Introduction: The Z Boson

To begin with, let’s look at the ordinary Z boson of the Standard Model. I am
a big fan of using the Standard Model as a vehicle toward understanding new

∗Current address: Department of Physics and Astronomy, University of California,

Irvine, CA 92697
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physics, and indeed, the Z boson is a perfect example of a vector resonance,
one that illustrates almost any phenomena one could expect to encounter
in the resonances of more exotic theories. We will discuss resonances with
different spins when we turn to theories of physics beyond the Standard
model further on. This review of the Z comes with two warnings: 1) it will
by no means be complete (see the LEP EWWG report[1] for more details)
and lacks any attempt at proper referencing, and 2) I made no real effort to
match conventions with the rest of the world. Since I derived everything from
scratch, it should be mostly self-consistent, but be careful when consulting
another reference in tandem.

1.1 e+e− → f f̄

To begin with, we consider e+e− scattering into a pair of fermions, f f̄ . Some
slight care is needed when the f ’s are themselves electrons, so we implicitly
assume for now that f �= e. In the Standard Model, this scattering is de-
scribed at leading order in perturbation theory by two Feynman diagrams,
one with an s-channel photon, and one with an s-channel Z. An example
of one of these graphs is shown in Figure 1, where the labels indicate the
incoming momenta pa and pb and outgoing momenta p1 and p2. The matrix
element is given (in the unitary gauge) by,

M = e [v̄bγ
μua]

−gμν

s + iε
Qfe [ū1γ

νv2] + (1)

[v̄bγ
μ(ge

RPR + ge
LPL)ua]

−gμν + pZ
μpZ

ν /M2
Z

s − M2
Z + iε

[
ū1γ

ν(gf
RPR + gf

LPL)v2

]

where PL/R are chiral projectors, the labels on the four-spinors u and v
remind us which momentum they take as their arguments, s ≡ (pa + pb)

2

is the usual Mandelstam variable, e is the electromagnetic coupling, Qf the
charge of f , and gi

L/R are the (chiral) Z boson couplings to fermion i,

gi =
e

sin θW cos θW

(
T i

3 − Qi sin2 θW

)
(2)

where T3 is the third component of weak iso-spin and θW the weak mixing
angle.

For now, let’s consider unpolarized scattering, summing over the final
state spins and averaging over the initial spins. For simplicity, I will as-
sume s � mf and drop mf in the calculation. For LEP, this was a good
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Figure 1: Feynman diagram showing e+e− → f f̄ through an intermediate
photon or Z boson.

approximation for any fermion we had enough energy to produce anyway.

|M|2 =
1

4

{
e4Q2

f

s2
Tr [� pbγ

μ � paγ
ν ] Tr [� p1γ

μ � p2γ
ν ] (3)

+
e2Qf

s(s − M2
Z)

2ReTr [� pbγ
μ � paγ

ν(ge
RPR + ge

LPL)] Tr
[
� p1γ

μ � p2γ
ν(gf

RPR + gf
LPL)

]

+
1

(s − M2
Z)2

Tr
[
� pbγ

μ � paγ
ν(ge2

R PR + ge2
L PL)

]
Tr

[
� p1γ

μ � p2γ
ν(gf2

R PR + gf2
L PL)

]}

where I have dropped the +iε terms in the Feynman propagator, which I do
not need here. If f is a quark, I will also need to sum over their (mutual)
colors, which will produce a factor of Nc = 3. Performing the traces leads to,

|M|2 =
1

4

{
4e4Q2

f (1 + cos2 θ) (4)

+
e2Qfs

(s − M2
Z)

[
(ge

L + ge
R)(gf

L + gf
R)(1 + cos2 θ) + 2(ge

L − ge
R)(gf

L − gf
R) cos θ

]

+
s2

(s − M2
Z)2

[
(ge2

L + ge2
R )(gf2

L + gf2
R )(1 + cos2 θ) + 2(ge2

L − ge2
R )(gf2

L − gf2
R ) cos θ

]}

where θ is the scattering angle of f in the center-of-mass frame. We’ll come
back to this expression in more detail after we fix up one important feature.

This expression for |M|2 is very simply related to the differential cross
section,

dσ

d cos θ
=

1

64πs
|M|2 . (5)
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Since |M|2 approaches a constant as s → 0 or s → ∞, we can see that
the cross section is enhanced if we choose small center-of-mass energies (but
note that this does not continue arbitrarily, since at some point we won’t
have enough energy to produce the f f̄ final state and the process will switch
off), and suppressed at very high energies.

The last term of Eq. 4 shows that the cross section is enhanced if we
choose s � M2

Z . This is the resonant behavior we’re looking for, but it also
shows that the leading order to which we have been working is not cutting it.
The cross section may be enhanced around the Z mass, but clearly this result,
which says it should diverge, is unphysical1. To do better, we must consider
improving our calculation with some higher order effects in perturbation
theory.

1.2 Resummed Propagator

To simplify the discussion, but without dropping any important details, in
my discussion of higher order effects I will neglect the fact that the Z boson
has spin, and treat it like a scalar. I will also restrict myself to the fermion
sector, and ignore their spins too. So as far as the loop calculation goes, I
am looking at the correction induced to a scalar Z boson by its coupling to
a pair of scalar quarks or leptons. The full case, carrying around the vector
and spin indices, is left as an exercise for the reader. It’s not hard, just a
little more messy. Seriously.

I actually need the first non-trivial correction to the propagator, the one
that arises at one loop. However, I need to resum the important parts of it
at all orders. Let’s see how this works. The full correction to the propagator
contains diagrams such as:

In addition to the genuine two loop and higher order corrections, we also
have a two-loop term that is just the square of the one-loop correction itself.
At every order n, there is a term that looks like the one-loop correction raised
to the nth power. In fact, if I reorder my perturbative series so that instead
of being organized by powers of the coupling, it is instead organized by the
number of internal Z boson propagators, I can write this series as,

1If you thought the Feynman +iε’s could save us, note that since ε → 0 they are just

a temporary regulation of the problem.
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where the blob represents the one-particle irreducible correction to the Z
boson propagation:

which I will call iΣ(s) and will eventually compute, in our scalarized theory,
to one loop in perturbation theory2.

Organized this way, the propagator looks like a geometric series,

i

s − M2
Z

+
i

s − M2
Z

iΣ(s)
i

s − M2
Z

(6)

+
i

s − M2
Z

iΣ(s)
i

s − M2
Z

iΣ(s)
i

s − M2
Z

+ ...

=
i

s − M2
Z

⎧⎨
⎩1 + iΣ(s)

i

s − M2
Z

+

(
iΣ(s)

i

s − M2
Z

)2

+ ...

⎫⎬
⎭

=
i

s − M2
Z

⎛
⎜⎝ 1

1 + Σ(s)
s−M2

Z

⎞
⎟⎠ =

i

s − M2
Z + Σ(s)

By computing Σ(s) to whatever order in perturbation theory I like, and then
using this modified propagator, I am capturing some effects at all orders in

2Note that Σ, as a Lorentz scalar, can at most be a function of s. It was precisely to

avoid dealing with its tensor structure that I went to a scalarized toy example.

= + + ...
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perturbation theory. This is great, but it does have some dangers, because
while I get some effects at all orders, I am also missing some effects at every
order3. In general, I do need to be careful with this trick, because important
features like gauge invariance hold order by order in perturbation theory.
By keeping parts of a given order, I am potentially jeopardizing important
cancellations and so forth. This issue will not bite us here, but it is good to
keep the subtleties clearly in (the back of one’s) mind even while not being
rigorous.

We can write the most general expression for Σ(s),

Σ(s) = Z−1(s)s + B(s) + iγ(s) (7)

or in other words, there is a dimensionless complex coefficient Z−1(s) (the
wave function renormalization) which multiplies s itself, and two real func-
tions B and γ which have dimensions of mass2 , but whose dimensions are
not made up from s itself. In our problem, they both must be proportional
to M2

Z , since there is no other mass scale (having assumed mf → 0 at hand.
The functions Z−1(s) and B(s) turn out to be divergent. They also are

not going to help with our problem at s � M2
Z , because Z−1 just rescales

the entire amplitude, and B(s) just shifts the place where it occurs by some
amount. The divergent functions need to be defined by a renormalization
scheme; the obvious one for this problem is the on-shell scheme, for which,

Z−1(M2
Z) ≡ 1 B(M2

Z) ≡ 0 (8)

which allows us to ignore both Z−1(s) and B(s) for s � M2
Z . These really

just amount to requiring that the parameter MZ in the Lagrangian is defined
to be the center of the Z boson resonance, and that the field is canonically
normalized there.

The γ(s) term is the one we are looking for. It regulates the divergence,
resulting in the most divergent term (the third term of Eq. 4) becoming,

|M|2 ∝
1

(s − M2
Z)

2
+ γ2

(9)

As s → M2
Z , the cross section no longer goes to infinity, but instead is

proportional to 1/γ2 (with a Breit-Wigner shape for s close, but not equal

3This is a general feature of resummations, and is i.e., part of the headache we get

when we try to improve a parton shower at higher orders.
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Figure 2: The cross section as a function of ECM after resumming the prop-
agator (from the LEP EWWG[1]).

to M2
Z). The parameter γ(M2

Z) controls both the location of the peak in the
distribution, and also the shape as the cross section falls off, slightly away
from the peak position. In Figure 2, we show the result with the non-zero γ
included, illustrating how γ regulates the behavior for s � M2

Z .

1.3 γ in the Toy Theory

Now let’s compute γ in the scalarized theory. If you are very comfortable
doing such calculations, I suggest you skip down to the next subsection,
where we will interpret the results.

At leading order in perturbation theory, we need the graph,

with (scalarized) leptons νe, νμ, ντ , e, μ, τ and quarks u, d, s, c, b, t running in-
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side the loops. For a single one of these graphs, our loop correction is,

g2
∫ d4	

(2π)4

1

	2 − m2
f + iε

1

(	 + p)2 − m2
f + iε

(10)

(remember that this loop is divergent, but that won’t hurt us since ulti-
mately we are after γ which is not). pμ is the incoming/outgoing external
momentum; p2 is s in our previous discussion. We can rewrite this using the
Feynman parameterization,

1

AB
=

∫ 1

0
dx

1

[xA + (1 − x)B]2
, (11)

which after some algebra results in,

g2
∫ d4	

(2π)4
dx

[
	2 + 2(1 − x)	 · p + (1 − x)p2 − m2

f + iε
]−2

. (12)

Adding and subtracting (1 − x)2p2 inside the square brackets allows us to
complete a square, and then changing integration variables to 	′μ ≡ 	μ +(1−
x)pμ yields,

g2
∫

d4	′

(2π)4
dx

1

[	′2 − Δ + iε]2
(13)

where

Δ ≡ −x(1 − x)p2 + m2
f . (14)

To perform the integration over 	′, we move into Euclidean space, taking
	0
E = i	′0,


	E = 
	′ (so 	′2 → −	2
E). The +iε’s allow us to deform the path

integration back to the real 	0
E axis. Having kept them around long enough

to keep us honest at this step, we can now afford to ignore them. The loop
integral becomes,

g2
∫

d4	E

(2π)4
dx

1

[	2
E + Δ]

2 = g2 2π2

(2π)4

∫ ∞

0
d	2

E

∫ 1

0
dx

	2
E

[	2
E + Δ]

2 . (15)

We now shift 	2
E by Δ and cut the divergent integral off at some large scale

Λ, resulting in,

g2

8π2

∫ Λ2

Δ
d	2

E

∫ 1

0
dx

{
1

	2
E

−
Δ

	4
E

}
(16)

=
g2

8π2

∫ 1

0
dx

{
log

(
Λ2

Δ

)
− 1 +

Δ

Λ2

}
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(where we note in passing that there is no term proportional to p2, implying
that Z−1 vanishes at the one loop order in our toy theory). The last term
vanishes as we take the cut-off Λ to infinity. The middle term clearly does
not contain an imaginary part. So to get a non-zero result for γ, we need the
log to develop a branch cut, which will happen if Δ < 0,

log

(
Λ2

Δ

)
→ iπ + log

(
Λ2

|Δ|

)
(Δ < 0) (17)

Provided this happens for some values of x in the range of its integration,
the imaginary part of the self-energy correction is given by,

γ(p2) =
g2

8π

∫
Δ<0

dx =
g2

8π

(
x+ − x−

)
(18)

where x± is the largest (smallest) value of x for which Δ < 0. Note that the
dependence on the regulator Λ has vanished for the imaginary part, justifying
my initial statement that the imaginary part of Σ was not divergent.

From the definition of Δ, Eq. 14, and the fact that for 0 ≤ x ≤ 1, x(1−x)
is maximal at x = 1/2, we see that to have a region with Δ < 0, we need a
large enough p2 such that,

p2 ≥ 4m2
f . (19)

This implies that we can ignore any particle in the loop whose mass is less
than half of the center-of-mass energy – such particles induce contributions
to Z−1(p2) and B(p2), but they do not contribute to the imaginary part of
the self-energy. At LEP energies, this means we didn’t actually need the top
quark in the loop.

Provided p2 ≥ 4m2
f ,

x± =
1

2

⎛
⎜⎝−1 ±

√√√√1 −
4m2

f

p2

⎞
⎟⎠ , (20)

for which,

γ(p2) =
g2

8π

√√√√1 −
4m2

f

p2
. (21)
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1.4 Back to e+e− → f f̄

For the region that sparked our interest in γ to begin with, p2 � M2
Z , we can

further recognize,

γ(M2
Z) = MZΓ(Z → f f̄) . (22)

We thus see at for energies close to the mass of the Z, the imaginary part
of the one-loop contribution has produced the leading order decay width.
Summing over all fermions for which p2 ≥ 4m2

f , the imaginary parts of each
of the one-loop amplitudes simply adds, and γ(M2

Z) = MZΓZ reproduces the
inclusive decay width.

The fact that the width has appeared is not an accident – it is a general
feature of quantum field theory, guaranteed by the optical theorem [2] as
applied to the propagator. The optical theorem relates the imaginary part
of the scattering a → b to the amplitudes for all possible final states a → F
and b → F ,

2 Im M(a → b) =
∑
F

∫
dΠFM

∗(b → F )M(a → F ) (23)

where dΠF is the integral over the phase space of F . Applied to the self-
energy for the Z boson, the left-hand side of the equation (at one loop)
becomes 2 Im M(Z → Z) = 2γ(M2

Z) and we have,

γ(M2
Z) =

1

2

∑
F

∫
dΠF |M(Z → F )|2 . ≡ MZΓZ (24)

Since nothing in our argument made explicit reference to the Z itself, it is
clear that this will work for any particle which has decay amplitudes into
on-shell states. In practice, this is how we compute γ in terms of the the
width using only tree-level Feynman diagrams.

What we’ve learned is that the Z boson propagator has an imaginary part
which receives contributions from every particle into which the Z can decay.
At very low and very high energies, we don’t notice the width because it is
small, arising from higher order in perturbation theory than the zeroth order
propagator. Around the Z mass, the width is crucial, because the zeroth
order propagator vanishes, and the higher order effects are leading.
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1.5 The Narrow Width Approximation

In the limit Γ/M → 0, the Breit-Wigner becomes a δ-distribution:

1

(s − M2)2 + M2Γ2
→

π

MΓ
δ(s − M2) (Γ/M → 0) (25)

In this limit we can only produce the Z boson on-shell. The δ-function
puts the intermediate boson on-shell, and at leading order factorizes the
production from the decay. The cross section becomes,

σ(e+e− → f f̄) (26)

→
1

32πs

∫
dΠfdΠf̄ |M(e+e− → Z|2

π

MΓ
δ(s − M2)|M(Z → f f̄ |2

= σ(e+e− → Z)
Γ(Z → f f̄)

Γ
= σ(e+e− → Z)BR(Z → f f̄)

the expected product of on-shell production times the branching ratio into
f f̄ . For most weakly coupled resonances, this approximation holds very well.

In the narrow width limit, the unpolarized cross section for e+e− → f f̄
“on the pole” becomes,

dσ

d cos θ
=

1

32

M

Γ
δ(s − M2) × (27){

2(ge2
L − ge2

R )(gf2
L − gf2

R ) cos θ + (ge2
L + ge2

R )(g2f
L + gf2

R )(1 + cos2 θ)
}

which reveals how we can start to learn about the couplings to the Z. When
computing the inclusive cross section, integrated over all θ, the first term in
the curly braces integrates to zero. So the inclusive cross section is propor-
tional to the sum of the left- and right-handed couplings squared.

This is also a good place to remark on an interesting feature of the SM Z
boson – because the weak mixing angle takes a particular value, sin2 θW �
1/4, the electron couplings (see Eq. 2) approximately satisfy ge

L � −ge
R. This

implies that there is an approximate cancellation in the coefficient of the first
term in the curly braces for the SM Z. For the real Z boson, that is fine –
it’s the physics we have been handed. However, it does imply that taking
the SM Z as the most generic possible model for a resonance may lead us to
conclude that any effect from that term is suppressed, and this may not be
a generic feature of new physics. So when you hear the words “Sequential
Standard Model Z ′” in an experimental search, don’t be fooled.

11



Moving back to measuring the couplings, we saw that the production
cross section is sensitive to the sum of the squares of the left- and right-
handed couplings. What we would like to do next is to unravel the relative
amounts of right- versus left-handed couplings. One way to do that is to
follow the SLC route and polarize the incoming beams. For example, we can
just count events when the electron is left-handed compared to the number
of events when it is right-handed, and form the ratio,

ALR (= Ae) ≡
NL − NR

NL + NR
=

ge2
L − ge2

R

ge2
L + ge2

R

(28)

the information about the final state cancels out in the ratio.
The other way to disentangle right- from left-handed couplings is to mea-

sure forward-backward asymmetries. From the differential cross section on
the Z pole, it is clear that the way to do that is to pick up sensitivity to the
cos θ term in the differential cross section. θ is the angle between the incom-
ing electron beam (which we know) and the out-going particle, f . Provided
we can tell f from the anti-particle f̄ in a given event4, we can measure θ. If
we define a forward particle to lie in the region 0 ≤ cos θ ≤ 1 and a backward
particle to be in the region −1 ≤ cos θ ≤ 0, we arrive at,

Af
FB ≡

NF − NB

NF + NB
=

3

4

(
ge2

L − ge2
R

ge2
L + ge2

R

)(
gf2

L − gf2
R

gf2
L + gf2

R

)
=

3

4
AeAf (29)

Since the cross section on the Z pole depends only on the square of
couplings, we can’t actually get information about the absolute or relative
signs of the couplings from polarized or forward-backward measurements.
This is where the photon actually becomes a help instead of just a nuisance.
From Eq. 4, we see that the interference terms contain single powers of Z
couplings and single powers of electromagnetic couplings, and are sensitive
to the relative signs. This is illustrated in Figure 3, which shows Ab

FB as
a function of center of mass energy, for the four possible sign combinations
with the magnitudes of gb

L and gb
R set as in the SM. The four curves meet at

the Z mass, and diverge at higher and lower energies, driven by the different
admixture of Z-γ interference.

4It’s not always easy. For charged leptons it is moderately simple, and for heavy quarks

with semi-leptonic decays, it can be done. For light quarks, it is probably hopeless.
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Figure 3: The forward-backward asymmetry of the bottom quark as a func-
tion of center-of-mass energy, showing data and the four possible sign com-
binations with magnitudes set by the SM (from Ref[3]).

1.6 The Lone Resonance: νν̄ → f f̄

To better understand the Z resonance without the complication of the photon
exchange, let’s consider a process which we can’t really do realistically in the
lab. If we consider inelastic neutrino scattering νν̄ → f f̄ , there is a single
Feynman diagram, Fig 1 with only the Z boson exchanged. Since right-
handed neutrinos (if they exist at all...) don’t couple to the Z, the inclusive
cross section simplifies to,

σ(νν̄ → f f̄) =
gν2

L

96π

s

(s − M2)2 + M2Γ2
(gf2

L + gf2
R ) . (30)

We’ve already discussed ad nauseum the Breit-Wigner behavior around s �
M2. For s � M2, we can Taylor-expand the propagator and find a cross
section which grows with energy, but is suppressed by the large mass. For
s � M2, the cross section falls as 1/s, consistent with the requirements of

13



unitarity. To summarize,

σ(s) ∼

⎧⎪⎨
⎪⎩

s/M4 (s � M2)
s/[(s − M2)2 + M2Γ2] (s ∼ M2)

1/s (s � M2)
(31)

When interference is not important, these three regimes summarize the most
important behavior of an exchanged “resonance”. When s � M2, the res-
onance is effective integrated out, and the cross section represents the four-
fermion interaction it leaves behind in the low energy theory.

2 Models with Resonances

A new resonance can be classified by its basic properties such as spin and
transformation under the SU(3)c × SU(2)W ×U(1)Y SM gauge symmetries.
Below, I will run through some of our favorite models which lead to such
objects, with some of their known LHC phenomenology interleaved as ap-
propriate.

2.1 Z ′

Experimentalists sometimes call any resonance (usually decaying into lep-
tons) a Z ′, which is a useful classification for them because it organizes
many models with similar signatures together. For theorists, the standard
definition is a color singlet, electrically neutral, vector particle. As a vector
particle, a Z ′ is a typical signal when the SM gauge groups are extended.
That could occur in a simple way, such as promoting the gauge sector to
SU(3)c × SU(2)W × U(1)Y × U(1)′, or we could enlarge either SU(2)L or
U(1)Y (or both), or unify the entire SM gauge structure into a higher rank
GUT such as SO(10). In any of these options, extra massive gauge fields
result when we break these larger symmetries down to the SM itself.

If we take a U(1)′ extension of the SM as a prototype, we have a well de-
fined framework with well defined parameters. We can add terms to describe
the propagation of the new vector (Vμ),

L = −
1

4
(F ′

μν)
2 +

ζ

4
F ′

μνF
μν
Y +

1

2
M2VμV

μ (32)

The first term is a usual kinetic term for a vector particle. The second term
induces kinetic mixing between the Z ′ and hyper-charge, which causes the Z ′

14



to pick up some fraction of coupling to all SM fields proportional to their SM
hypercharges[4]. The final term is actually a stand-in for an entire new Higgs
sector which gives mass to the Z ′. For colliders, this new Higgs sector usually
boils down to just the mass of the Z ′, as we have written here. However,
one may choose the mass of this new scalar to be light enough it can be
produced at colliders, and couple it, say, to the usual SM Higgs, affecting
Higgs physics.

A Standard Model matter field Ψ will couple to the Z ′ through its charge
under U(1)′ in terms of an extended covariant derivative,

DμΨ → D(SM)
μ Ψ − ig′zΨVμΨ (33)

where g′ is the Z ′’s universal gauge coupling, which may be a free parameter
or may be predicted if the Z ′ descends from a higher rank group in which the
SM is also embedded. Every matter field may have its own charge z, which
again may be predicted some models.

If we want the SM fermion masses to come from renormalizable interac-
tions, we should choose the z’s such that they permit us to write such terms
down. For example, the top Yukawa coupling would require,

ztR − zQ3
+ zH = 0 . (34)

Note, however, that most of the SM fermion masses are counter-intuitively
small, and by assigning charges which violate U(1)′, we can actually engineer
their observed sizes to some degree - this is one particular UV realization of
a Frogatt-Nielsen model of flavor[5].

Many models[6] choose the Higgs charge zH to be zero. This choice re-
moves the danger that the ordinary Higgs VEV will induce Z-Z ′ mixing.
Given the success of the electroweak fit, such mixing is generically lim-
ited at the 10−3 level[1], though it is possible in a multi-Higgs model to
play the VEVs against one another so that the mixing is small despite the
charges being non-zero. That is how the canonical E6 GUTs survive preci-
sion measurements[7]. Another set of bounds on the charges and mass come
about from LEP-II, which studied the reaction e+e− → f f̄ above the Z-pole.
We saw in the previous section that at energies far below the mass of the Z ′,
its contribution to to the cross section goes like ∼ s/M2 (when the Z ′ is the
only mediator of the reaction, the cross section goes like s/M4, but in this
case the interference with the SM photon and Z goes like the SM rate times
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∼ s/M2. As a result, LEP-II is able to derive limits on M/g′ for different
patterns of couplings to fermions [8, 6].

A further guide to the charges of the fermions is provided by anomaly
cancellation. In order for the gauge symmetry to survive at the quantum
level, a model with an extra gauge symmetry should not have gauge anoma-
lies. However, the fact that the symmetry is spontaneously broken raises the
possibility that the anomalies may cancelled by additional fermions which
are chiral under U(1)′ (and are usually vector-like under the SM gauge sym-
metries in order to preserve the success of anomaly cancellation in the SM).
If such fermions have masses around the mass of the Z ′ itself, it is unlikely
they will have much effect on the collider phenomenology of the Z ′.

A final concern for the fermion charges comes from flavor-changing neutral
currents (FCNCs). If the Z ′ charges are not universal over the three families,
we will generically have tree level FCNCs,which in the least will require the
Z ′ to be heavy to avoid low energy bounds[9]. Let’s see how this works
using the right-handed down-quarks as an example. If the charges are not
Universal, then before EWSB we will have interactions with the Z ′ such as

g′
[
d̄1 d̄2 d̄3

] ⎡⎢⎣ zd1
0 0

0 zd2
0

0 0 zd3

⎤
⎥⎦ �Z ′PR

⎡
⎢⎣ d1

d2

d3

⎤
⎥⎦ ≡ g′D̄Zd �Z ′PRD (35)

where D is a vector in flavor space, and Zd the 3 × 3 diagonal matrix of the
couplings to right-handed down quarks. After EWSB, there will be a change
of basis to take us from the quarks from the weak to the mass eigenstates,

Qd ≡

⎡
⎢⎣ d

s
b

⎤
⎥⎦ = UdR

⎡
⎢⎣ d1

d2

d3

⎤
⎥⎦ = UdRD (36)

where Qd is the vector of the mass eigenstates. Applying this rotation to the
Z ′ interactions in Eq. 36, we arrive at the quark mass eigenstate interactions,

g′Q̄d

(
U †

dRZdUdR

)
�Z ′PRQd (37)

where we see that the matrix (U †
dRZdUdR) need not be diagonal, even though

Zd was. The easiest way to insure that it there are no FCNCs is to assign a
common charge for all three right-handed down-type quarks. In that case, Zd

is proportional to the unit matrix, and the product of unitary transformations
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U †
dRUdR result in the unit matrix. This is the same mechanism by which the

SM Z was left without tree-level FCNC interactions.
Putting all of my personal prejudices together, we should have family

universal couplings to fermions (to avoid FCNCs), no charge on the SM
Higgs to avoid Z-Z ′ mixing, and I don’t particularly care if the anomalies
cancel with SM fermion content or not. When the dust has settled, I am left
with parameters:

MZ′ , ΓZ′ zQ, zu, zd, zL, ze (38)

technically there is also the gauge coupling g′, but unless I am embedding into
a GUT or other extended structure, I can just absorb it into the normalization
of the the z’s without any confusion. I left the width of the Z ′ as a free input
to allow for decays into non-SM channels, including perhaps right-handed
neutrinos. Obviously, if there are important observable decays into non-SM
modes, I would have to add to this list accordingly.

2.1.1 Z ′s at the LHC

At the Tevatron or LHC, the obvious signal for a Z ′ would be a bump in
an invariant mass distribution, much the way the Z appears as a bump
against the continuum photon-mediated processes. A final state with a pair
of charged leptons[10, 11] is an obvious place to look, because they are easy
to trigger on, have smaller backgrounds, and more precise reconstruction
than jet final states. A Z ′ with mass below a few TeV and large branching
ratio into leptons is a discovery that could be made with a relatively modest
amount of LHC data.

We can transcribe much of our experience with the Z boson in the earlier
chapter onto a Z ′. At a hadron collider, we replace the e+e− initial state
with a qq̄ one. The rate at a hadron machine is estimated by taking this
“partonic” reaction and convolving it with the parton distribution functions
(PDFs). The rate of Z ′ production thus turns into a measurement of a sum of
the quark charges (both right- and left-handed) with coefficients determined
by the PDFs, and an over-all factor of the branching ratio into the final
state of interest. Information about individual quark charges including right-
versus left-handed couplings is a little more difficult, because the LHC, as
a pp collider, makes it difficult to identify which direction along the beam
is the direction of the quark, and which direction the anti-quark. However,
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using the difference of valence q versus q̄ PDFs as well as clever observables
can disentangle a lot of parameter space[12].

2.2 Topcolor

A second class of theory which predicts an interesting resonance is the family
of topcolor models[13]. Broadly, these models predict a composite Higgs
boson which is a bound state of top quarks, and thus couples strongly to
top as a residual of the binding force[14]. In practice, topcolor generally has
difficulty getting the right amount of EWSB and the right top mass by itself,
leading to extensions in which either there is more electroweak breaking from
a technicolor sector[15] or there is an additional fermion participating in the
strong dynamics whose mixing with top dials in the correct top mass[16].
The specific details of those models are not very important for our purposes
here – all of them lead to resonances with similar phenomenology. So I will
describe the simplest model[13] here.

The theory extends the color sector of the Standard Model to SU(3)1 ×
SU(3)2, usually called “topcolor” and “protocolor”, respectively. The top
quark (both Q3 and tR) are triplets under SU(3)1 and the light quarks are
triplets under SU(3)2. At the scale of a few TeV, this structure breaks down
through some usually unspecified dynamics, resulting in an unbroken SU(3)c

to play the role of ordinary color and a massive color octet of “topgluons”
(g1). The couplings are usually chosen such that the topgluons are mostly
the original SU(3)1 bosons, and the ordinary gluons are mostly the SU(3)2

gluons. This choice results in the topgluons coupling strongly to top quarks
and weakly to the light quarks. The unbroken SU(3)c symmetry guarantees
that the massless bosons couple universally to all of the quarks. If you find
this discussion confusing, you can go down to Section 3 and you will find it
worked out in more detail.

At sub-TeV energies, we are in the regime where the topgluons can be
integrated out, and look like a contact interaction (see Figure 4). Their
important effect in this low energy effective theory is to produce a coupling
between right-handed and left-handed top quarks,

−
g2

M2
[t̄RγμT atR]

[
Q̄LγμT

aQL

]
= −

g2

M2
[t̄RQL]

[
Q̄LtR

]
(39)

where g is the g1 coupling to top quarks and M is its mass, QL is the third
family quark doublet and the last equality is easily understood as a Fierz
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Figure 4: Feynman diagram showing how g1 mediates a 4-top interaction at
low energies.

transformation. Four fermion interactions of this kind (but involving the
light quarks) have been extensively studied as a low energy model of QCD
and chiral symmetry breaking, the Nambu-Jona Lasinio (NJL) model [17].

If g is large enough, this interaction results in scalar bound states. We
can see how this works in more detail by taking our four-fermion interaction,
and rewriting it in terms of an auxiliary field Φ,

L(Λ) =
1

2
gtQ̄LtRΦ + g∗

t t̄RQLΦ∗ − Λ2|Φ|2 (40)

where Φ transforms as a SM Higgs, but has no kinetic terms. Integrating
it out is thus trivial, and reproduces the original four fermion interaction
provided g2

t /Λ2 = g2/M2. An obvious identification would be gt = g and
Λ = M (and at tree level, it makes no difference), but the fact that nothing
guarantees that identification is an indication that our effective theory is sen-
sitive to the cut-off5, and thus to the details of the UV dynamics responsible
for binding Φ.

Our effective theory lives at the scale Λ. Below that scale, kinetic terms
(and a quartic interaction) for Φ will be induced at one loop, and the pa-
rameters Λ2 and gt will be renormalized (see Figure 5). Just as in the case
of the self-energy of the Z, these quantities are divergent and need to be
renormalized. However, we know the effective theory at the scale Λ, and we
can use this to set the renormalization constants,

Z(Λ) = 0 (41)

5Another way to appreciate this fact is to notice that we are taking a non-renormalizable

interaction, Eq. 39 and writing it in renormalizable language. This arbitrariness is a repre-

sentation of the non-renormalizability of the original theory as expressed in renormalizable

language.
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Φ Φ
Rt
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Figure 5: Feynman diagram showing how Φ develops kinetic terms at one
loop.

m2(Λ) = Λ2 (42)

The vanishing of the wave function renormalization at the compositeness
scale is a generic feature of a composite field, because it implies that this field
has no non-zero matrix elements between the vacuum and a single particle
state [18]. At scales below Λ,

L(μ) = Z(μ) (DμΦ)† (DμΦ) − m2(μ)|Φ|2 − λ(μ)|Φ|4 (43)

+
1

2
gt(μ)Q̄LtRΦ + H.c.

where,

Z(μ) = Nc
g2

t

16π2
log

(
Λ

μ

)
+ ... (44)

m2(μ) = Λ2 − Nc
g2

t

8π2
Λ2 + ... (45)

with similar expressions for gt(μ) and λ(μ). Note that if

g2
t >

8π2

Nc
≡ g2

crit (46)

m2(μ) becomes negative, and Φ develops a VEV, breaking the electroweak
symmetry.

To analyze the physics of Φ, we rescale the kinetic term for Φ to canonical
form by taking Φ → Z−1/2Φ. In terms of the canonically normalized field,
m2 → Z−1m2, λ → Z−2λ, and gt → Z−1/2gt. A useful approximation to
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determine the physics at the electroweak scale is to fix the parameters in the
canonically normalized theory such that m2(Λ) ∼ ∞ and gt(Λ) ∼ λ(Λ) ∼ ∞
(since all of these are finite in the unnormalized theory at Λ and going to the
canonical normalization divides each by a positive power of Z(Λ) � 0 at that
scale), and then use the renormalization group to determine the parameters
in the canonically normalized theory at scales μ ≤ Λ.

At energies much below Λ, our theory is nothing more than the Standard
Model itself, but with the Higgs potential parameters m2 and λ and the top
Yukawa coupling gt all predicted in terms of the original parameters Λ and
gt (provided gt > gcrit so that we have EWSB). The constraint required so
that m2 < 0 is the reason this theory has trouble fitting the right top mass
– it turns out that for gt large enough for m2 < 0, we are in a regime where
the top mass turns out to be too large.

2.2.1 Topcolor at the LHC

Since topcolor looks like the Standard Model at low energies, to distinguish
it from the Standard Model, we need to turn to the high energy behavior of
the theory. The generic feature of topcolor is the need to invoke the extended
SU(3)×SU(3) symmetry in order to generate the four-top contact interaction
at low energies, resulting in the composite Higgs. So a very generic feature
at high energies is the existence of the massive color octet vector particle g1

that couples strongly to top and weakly to light quarks.
At the LHC, g1 can be produced by qq̄ annihilation in the initial state.

While the coupling of g1 to light quarks is not huge, the fact that the light
quark PDFs are sizeable usually renders this the dominant production mech-
anism. Once produced, the large coupling to top dictates that g1 decays
into a tt̄ pair with a very high branching ratio. So the signature is a res-
onant structure in the invariant mass of tt̄ pairs. While not as clean as a
decay into leptons, decays into tops still have a lot of potential compared to
backgrounds, because top decays produce jets enriched with bottom quarks
which can be tagged and also a fair fraction of leptonic W decays. The pri-
mary challenge for high mass resonances is that they result in very boosted
tops, whose decay products become highly collimated, which can be challeng-
ing to reconstruct properly as jets merge and leptons end up buried inside
them[19] This is an interesting and active subject in collider phenomenology
and analysis technique[20].
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2.2.2 Topcolor versus Technicolor

I often get asked what the difference between topcolor and technicolor is.
They get confounded in people’s minds because both use strong dynamics to
trigger electroweak symmetry-breaking and further confusion arises because
both are families of theories, as opposed to single models. But the systematic
differences are that topcolor is a model of a composite Higgs. Technicolor is
a model of no Higgs.

One way to keep the definitive difference straight is to think about how
each model explains the high energy perturbative unitarity of WW → WW
scattering. Topcolor has a Higgs which does the job much the way the Higgs
does it in the Standard Model. Technicolor has no Higgs, and perturbative
unitarity is maintained by the existence of a weak triplet of vector particles
(usually called “techni-rhos” in analogy with the massive vectors of QCD).
They look like a Z ′ and a pair of W ′s with significant coupling to the SM W s
and Z (and perhaps weak coupling to fermions). So technicolor is another
model predicting new resonances! We will talk about particles much like the
technirhos below when we discuss topflavor.

This brings up an important point: the SM Higgs is an example of a
resonance! But you have many lectures devoted just to the Higgs itself, so
that is all I will say about it here.

2.3 Topflavor

Topflavor[21] is a similar construction to topcolor in many ways. The differ-
ence is that instead of taking the SM SU(3) interaction and identifying it with
the diagonal subgroup of two SU(3)’s, we take the SM SU(2) interaction,
and promote it to SU(2)1 × SU(2)2. The left-handed fermions of the third
generation are charged under SU(2)1 and the light fermions under SU(2)2.
This arrangement automatically takes care of anomaly cancellation, because
the SU(2) anomalies cancel within an entire generation of SM fermions.

When the symmetry breaks, SU(2) × SU(2) → SU(2), a massive Z ′

and pair of W ′s results, with enhanced coupling to the third generation.
The unbroken SU(2) is identified with the usual weak interaction, and has
approximately universal coupling to all of the SM fermions. In its many
incarnations topflavor has been helpful as a model of top mass generation
on top of strong dynamics models[21], raised the light Higgs mass above the
LEP-II bound in supersymmetric models[22] and its phase transition in the
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Figure 6: Cartoon explanation for why the charged lepton in a top (anti-
top) decay tends to go in the same (opposite) direction as the top spin. The
arrows above each particle indicate their spin. Figures (a) and (c) cover the
longitudinally polarized W decay cases, and figures (b) and (d) cover the
transverse W cases. From Ref[24]

early Universe may drive baryogenesis[23].
The Z ′ can be produced at the LHC by light quark annihilation. Once

produced, it tends to decay into third family fermions: tops, bottoms, tau
leptons, and their neutrinos. We’ve already covered top resonances. The res-
onance in bb̄ is challenging to distinguish over backgrounds. The τ resonance
is challenging to reconstruct because τ decays include missing energy and
are usually into hadrons, but nonetheless it is an interesting and probably
viable channel (with large statistics). The topflavor Z ′ will also decay into
ordinary W s. This decay is usually rare, but can be covered by high mass
SM Higgs searches. Because of the chiral structure of topflavor, the decay
into top quarks is mostly into left-handed tops. Top polarization can be
reconstructed, for example by looking at the direction of the charged lepton
from a semi-leptonic top decay (see Figure 6 for a cartoon explanation as
to why the charged lepton tends to move in the direction the top spin was
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pointing).
The topflavor W ′ will decay largely into tb̄ and τν. The decay into a

top quark appears as a resonance against the continuum background of s-
channel single top production[24, 25, 26]. Again, the coupling is left-handed
and polarization observables can help distinguish the W ′ of topflavor from
other theories.

2.4 SU(2)R

SU(2)R models have the gauge structure SU(2)L × SU(2)R × U(1)X fol-
lowed by a breakdown of SU(2)R × U(1)X → U(1)Y and were briefly cov-
ered in the lectures by David Kaplan. The fermion generations couple uni-
versally, with the left-handed doublets charged as usual under SU(2)L and
the right-handed fermions assembled (together with right-handed neutrinos)
into SU(2)R doublets. This gauge structure descends naturally from SO(10)
GUTs, and SU(2)R is often invoked in other contexts because it acts as a cus-
todial symmetry which prevents large contributions to the Peskin-Takeuchi
T parameter[27].

Because the W ′ and Z ′ couple in a family-universal manner, searches
typically look for electrons and muons from their decays. While decays into
tops are not particularly enhanced, they are still useful to measure the fact
that the couplings are right-handed.

2.5 Little Higgs

Little Higgs theories are an interesting solution to the little hierarchy prob-
lem. There are too many versions and too many details that go into con-
structing such a model, so I restrict myself to a few remarks here. There
are nice lectures from a previous TASI by Martin Schmaltz[30], and a good
review article[31] which is more easily accessible online.

Little Higgs theories postulate that the Higgs is a pseudo-Nambu-Goldstone
boson in order to protect its mass and solve the little hierarchy problem.
From a nuts and bolts point of view, they invoke W ′s and Z ′s to cancel the
one-loop quadratic divergence induced on the Higgs mass by the SM W and
Z, and a heavy t′ quark to cancel the divergence induced by the SM top. The
W ′s and Z ′s have phenomena similar to the ones we have already described.
The heavy quark will be dominantly produced singly through its mixing with
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the ordinary top[28] and decays into Wb, Zt, and ht, forming a (fermion)
resonance in those channels.

Modern little Higgs theories often incorporate a symmetry (T -parity) to
provide a dark matter candidate and lessen contraints from precision elec-
troweak data[29] In this class of models, the signatures involve missing energy
and were covered by Howie Baer.

2.6 Extra Dimensions

Bogdan Dobrescu provided nice lectures about extra dimensions, explain-
ing how the Kaluza-Klein decomposition results in massive copies of any
particles propagating in the extra dimension. You can also take a look at
previous TASI lectures by Graham Kribs[32] or Csaba Csaki[33]. The heavy
KK modes provide many potential new resonances: gravtons, gluons, weak
bosons, Higgs, etc....

3 Effective Theory Descriptions

We can write the low energy physics of a wide class of models with extended
gauge structures using effective field theory. A common theme among the
models of the previous section was a structure like G1 × G2 → GSM where
GSM is any of the SM gauge groups, SU(3)c (as in topcolor), SU(2)W (as in
topflavor, SU(2)R), or U(1)Y . This structure is also common in Little Higgs
theories, and mocks up the lowest KK mode of an extra dimension through
dimensional deconstruction[34].

In fact, it is more general than even those examples would indicate. If we
have vector particles transforming as adjoints under a SM group, the com-
bined requirements of gauge invariance under the SM symmetries with the
need for a hidden gauge symmetry for the heavy particles to insure consis-
tency, leads us to G1 × G2 → GSM in every case. Indeed SU(2) × SU(2) is
the effective theory description of the technirho[35] and also of the ordinary
rho meson of QCD[36].

So let’s work out an example in detail. The specific example I will use is
motivated by the topcolor model, with SU(3)1 × SU(3)2 → SU(3)c, but one
can pretty easily transcribe it into any SU(N)×SU(N) → SU(N), and with
minimal headaches into U(1) × U(1). A “moose” or “quiver” diagram[37] is
shown in Figure 7, and specifies the gauge groups (SU(3)1 × SU(3)2) as the
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Figure 7: Moose diagram for the SU(3) × SU(3) model.

Table 1: Representations for the matter fields.
Field Spin SU(3)1 SU(3)2

ψ1 1/2 3 1
ψ̄1 1/2 3̄ 1
ψ2 1/2 1 3
ψ̄2 1/2 1 3̄

Φ 0 3 3̄

two circles in the diagram. Each group has its own gauge coupling, g1 and
g2. I have chosen ψ1 to be a left-handed fundamental of SU(3)1, indicated by
its arrow going into that group. ψ̄1 is a right-handed fundamental (or if you
like, a left-handed anti-fundamental). ψ2 and ψ̄2 form another vector-like
pair, fundamental under SU(3)2. The arrows make it very easy to keep track
of anomaly cancellation. The dashed line Φ going between the two groups is
a scalar field which is a fundamental under SU(3)1 and an anti-fundamental
under SU(3)2. The gauge assignments are written out in Table 1, but it is
worthwhile to take the time to learn how to read the moose diagram. It may
seem awkward at first, but once you get used to it, it becomes second-nature.

The Lagrangian follows from the gauge structure. The gauge assignments
dictate the kinetic terms,

−
1

4

(
F 1

μν

)2
−

1

4

(
F 2

μν

)2
+ iψ̄1 (�D − m1)ψ1 + iψ̄2 (�D − m2) ψ2 (47)
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+Tr (DμΦ)† (DμΦ) − V (Φ) + yΦψ̄2ψ1 + H.c.

where the F ’s are the usual SU(3) field strengths, built from the gauge
fields A1

μ and A2
μ, and we have used the fact that we chose the ψ’s to be

vectorlike to pass immediately to four component language. If we had chosen
a chiral theory, we would have just used 2-component language or put in
projectors to end up where we wanted. Since I chose a vectorlike theory, I
went ahead and wrote down masses for the fermions. If they had had chiral
electroweak quantum numbers, as the SM fermions, the SU(2)W × U(1)Y

gauge symmetries would forbid such masses. The Tr on the kinetic term for
Φ is a way of tracing over the (double) gauge indices when I represent the
field as a 3 × 3 matrix with the rows representing the SU(3)1 index and the
columns representing the SU(3)2 index. The covariant derivatives are given
by,

Dμψ1 = ∂μψ1 − ig1A
1a
μ T aψ1 (48)

Dμψ2 = ∂μψ1 − ig2A
2a
μ T aψ2 (49)

DμΦ = ∂μΦ − ig1A
1a
μ T aΦ + ig2A

2a
μ ΦT a (50)

in terms of the two gauge couplings and the generators of SU(3) in the
fundamental representation, T a. We have also written down a potential for
Φ, and the Yukawa interaction between it and the fermions allowed by gauge
invariance.

Our theory thus has parameters,

g1, g2 m1, m2, y (51)

plus the parameters needed to describe the potential of Φ. The potential
parameters will be important for determining the VEV of Φ, and also the
masses of the Higgs bosons associated with it. These new Higgs bosons are
interesting physics, but usually hard to access at near-future colliders, so
in many cases we can ignore them when we talk about phenomena at the
LHC. Since our theory is a generic description of a massive color octet vector
particle, these parameters tell us what we are aiming for when we discover
an octet vector and want to measure its properties. Once we pin them down,
we can either try to fit them into a bigger framework for the UV physics, or
we may see that the framework doesn’t describe all of the phenomena we see
– in which case we need to extend the effective theory itself.
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We assume that the potential for Φ induces a VEV that is “diagonal” in
SU(3)1-SU(3)2 color space,

〈Φi
α〉 = u δi

α (52)

where u is the magnitude of the VEV and i is the gauge index of SU(3)1 and
α the index of SU(3)2. In practice, it is not hard to write down a potential
which results in the vacuum that we want. Inserting this VEV in the kinetic
term for Φ yields,

u2Tr
[(
−g1A

1a
μ T a + g2A

2a
μ T a

)
(−g1A

μ
1aT

a + g2A
μ
2aT

a)
]

(53)

=
1

2
u2

[
g2

1A
1 · A1 − 2g1g2A

1 · A2 + g2
2A

2 · A2
]

where · denotes contraction of the Lorentz and gauge indices. In analogy
with the electroweak theory, we rewrite the two gauge couplings,

g1 ≡
g

sin φ
, g2 ≡

g

cos φ
. (54)

In terms of these new parameters, the mass terms for the gauge fields can be
written,

1

2

g2

sin2 φ cos2 φ
u2 [Aaμ

1 Aaμ
2 ]

[
cos2 φ − sin φ cos φ

− sin φ cosφ sin2 φ

] [
Aa

1μ

Aa
2μ

]
(55)

The mass matrix is now easily diagonalized, and yields mass eigenstates,

ga
μ = sin φ A1a

μ + cosφ A2a
μ (56)

Aa
μ = − cos φ A1a

μ + sin φ A2a
μ

where ga is the massless mode, which we identify with the usual SM gluon,
and Aa is the massive color octet with mass,

M2 =
g2

sin2 φ cos2 φ
u2 . (57)

The fermion couplings to ga
μ are universal, as required by the unbroken resid-

ual gauge invariance,

g1A
a1
μ ψ̄1γ

μT aψ1 → g
(
− cot φAa

μ + ga
μ

)
ψ̄1γ

μT aψ1 (58)

g2A
a2
μ ψ̄2γ

μT aψ2 → g
(
tanφAa

μ + ga
μ

)
ψ̄2γ

μT aψ2 (59)
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with g the QCD coupling. The fermions have different couplings to the
massive octet, depending whether they were originally charged under SU(3)1

or SU(3)2. In topcolor, we could take φ to be a small angle, in which case
ψ1 could represent the top quark, and ψ2 could represent the light quarks.

Through the Yukawa interactions, the symmetry-breaking can also induce
mixing between ψ1 and ψ2. The mass matrix is,

[
ψ̄1 ψ̄2

] [ m1 yu
y∗u m2

] [
ψ1

ψ2

]
(60)

The mass matrix is diagonalized (in general) by a separate rotation of the
left-handed and right-handed fields, which can be found by considering the
matrices M †M and MM †. The mass eigenstates will continue to have uni-
versal couplings to the zero mass vector, but will have a mixture of ψ1 and
ψ2 couplings to the massive vector.

4 Closing Thoughts

Theories of physics beyond the Standard Model can show resonances in al-
most any pair of Standard Model particles we can imagine, with the possi-
bilities far out-stripping our ability to cover all of them. The discovery of
any resonance at the LHC will raise similar questions - what is its mass, how
wide is its width, how is it produced, and what does it decay into? Having
established the answers to those questions, we can then try to fit the reso-
nance into a deeper picture of organizing principles and symmetries. And
finding the answers themselves will be fun!

Many thanks to the lead organizers Tao and Robin (both examples that
spooky action at a distance can sometimes be effective6), and to the local
organizers KT, Tom, and the whole Boulder team. They made this TASI
another success. The students did their part and kept us lecturers on our
toes, through discussions both during and after the lectures.
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