

2244-15

Summer School on Particle Physics

6 - 17 June 2011

Neutrino Physics - II

William MARCIANO

Brookhaven National Laboratory

USA

Neutrino Physics Past, "Present" and Future "Puzzle Solving"

William J. Marciano
ICTP Lecture #3 & 4
Trieste, Italy
June, 2011

<u>OUTLINE</u>

- 1.) *Early History* (1931- 1973) the first 42 years
- 2.) Weak Neutral Currents: $SU(2)_L xU(1)_Y$ confirmation
- 3.) *Neutrino Oscillations*: Reactor, Solar, Atmospheric
- *4.) Neutrino Masses, Mixing, & Matter
- 5.) **Leptogenesis**: Matter-Antimatter Asymmetry (Universe)
- 6.) Neutrinoless Double Beta Decay (Dirac vs Majorana)
- 7.) **Leptonic CP Violation** (neutrino vs antineutrino) Requirements~300kton H₂O, 1-2MW protons,
- 8.) Future Neutrino Physics → Muon Collider
- 9.) Outlook & Speculation

3.) Neutrino Oscillations: Reactor, Solar, Atmospheric...

 If states are nearly degenerate & mix, quantum oscillations are possible. Produce a state that is not a Hamiltonian eigenstate, but a linear combination of several. Each will evolve separately in time and overall oscillations will occur.

Examples: K^0 - K^0 bar, B^0 - B^0 bar etc max mixing 45° $K^0(t=0) \rightarrow K^0$ bar $\rightarrow K^0$... (modulo decay)

Neutrinos similar but different (Fundamental point particles) not bound states

Non zero (but small) neutrino masses →oscillations

Or oscillations → neutrino masses & mixing

Blackboard Discussion of Neutrino Mass

4. Neutrino Masses, Mixing and Matter

- 1969-90s Ray Davis Measures Solar v_e Flux at Homestake Deep Underground Mine ~1/3 Expected! Gallex, Sage, SuperK, SNO, Kamland (Reactor)
 Interpretation: solar v_e→1/3 v_e+1/3v_μ+1/3v_τ (roughly)
- 1980s IMB, Kamioka, measure atm. ν_μ flux, less than expected (Also observe supernova 1987a neutrinos!)
 SuperK; K2K, MINOS (Accelerators)
 Interpretation: atm. ν_μ→1/2ν_μ+1/2ν_τ(near maximal!)

Neutrino Oscillations Established →Neutrino Masses & Mixing Measured (Great Progress!)

Katrin Spectrometer for H³→He³+e⁻+anti-v_e (to 0.2eV!)

KATRIN Main Spectrometer 6/14/11 9:09 AM

After the leak tests the tank was ready to be shipped. There is a slight problem of transportability from Deggendorf to Karlsruhe: The tank is too big for motorways, and the canal between the rivers Rhine and Danube has to be ruled out, too. Thus, instead of a journey of about 400 km, the spectrometer has to travel nearly 9000 km as indicated in the map

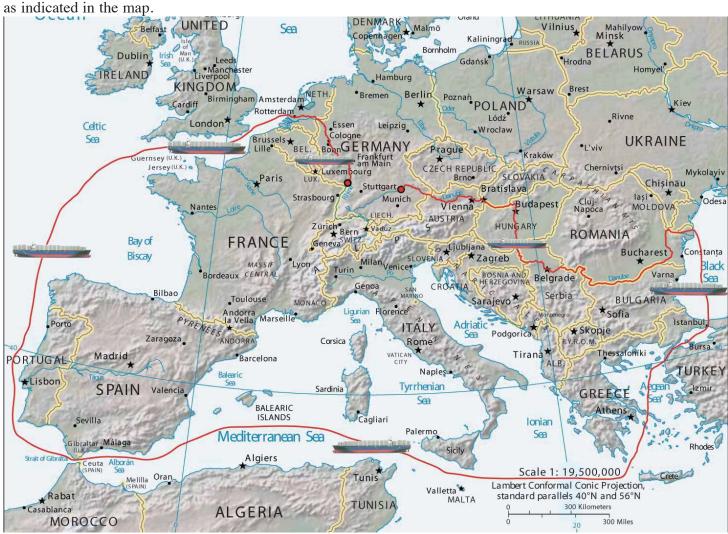
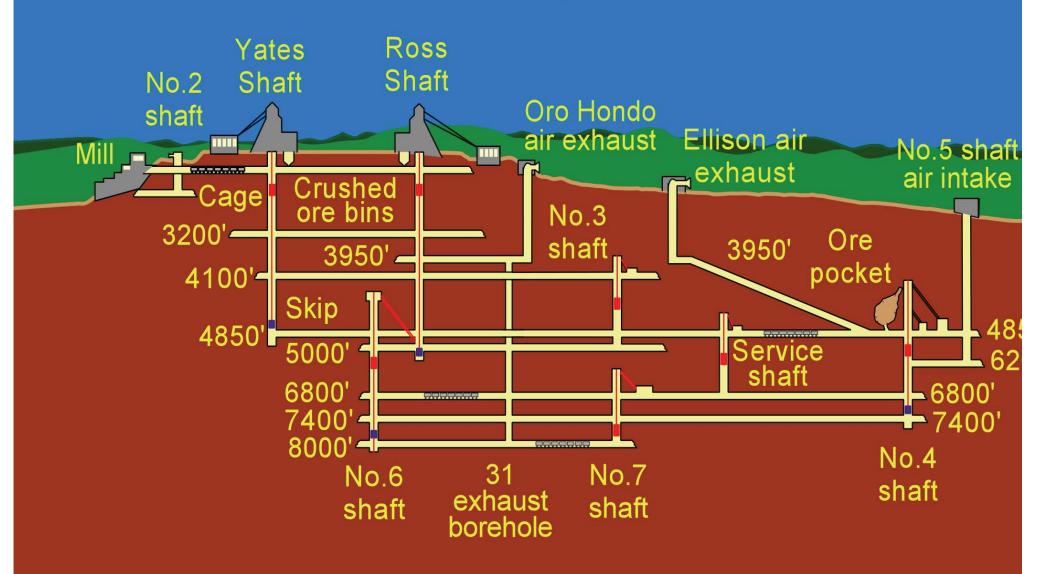
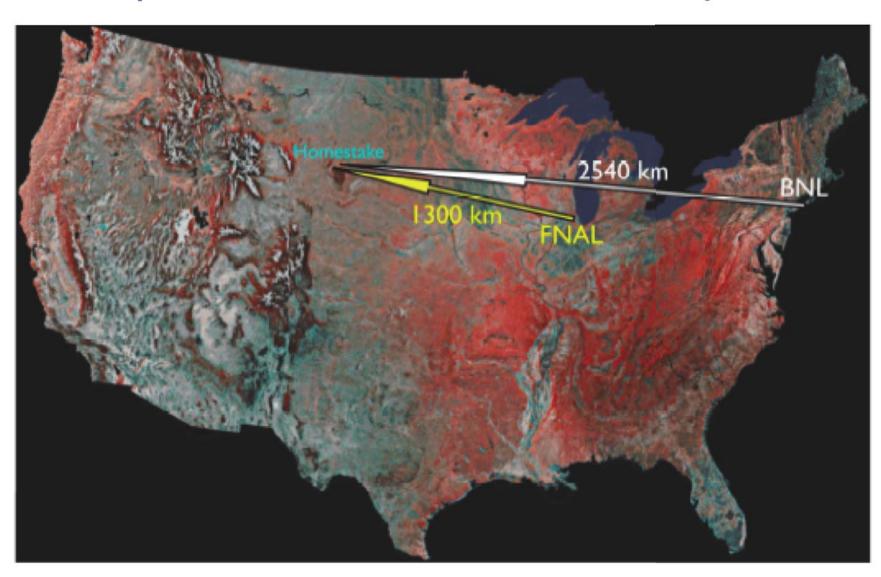
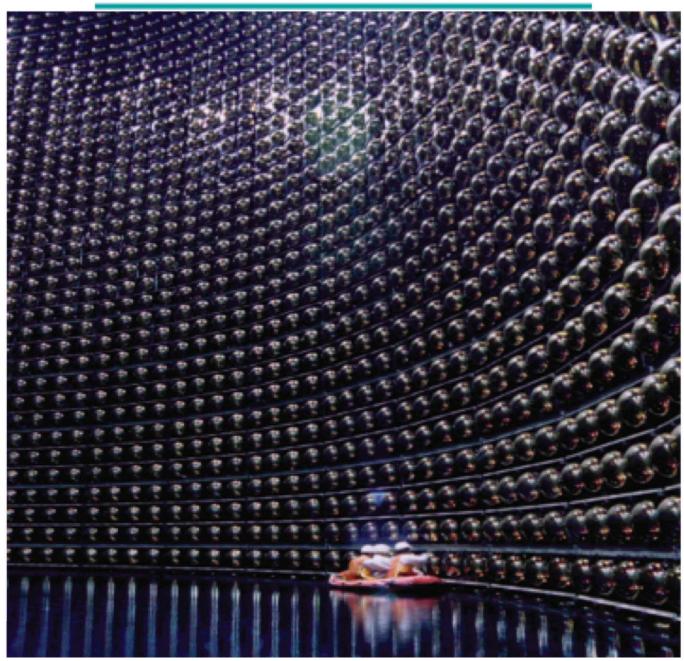



Fig. 5*): Journey of main spectrometer from Deggendorf (river Danube) to Leopoldshafen nr FZK (river Rhine)


*) Map courtesy of the University of Texas Libraries, The University of Texas at Austin.


General Homestake Mine Development

Very Long Baseline Neutrino Oscillations (Fermilab or BNL- Homestake)

SUPER KAMIOKANDE

3 Generation Mixing Formalism & Status)

$$\begin{pmatrix} |\nu_e \rangle \\ |\nu_{\mu} \rangle \\ |\nu_{\tau} \rangle \end{pmatrix} = U \begin{pmatrix} |\nu_1 \rangle \\ |\nu_2 \rangle \\ |\nu_3 \rangle \end{pmatrix} \tag{1}$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$c_{ij} = \cos\theta_{ij} , \quad s_{ij} = \sin\theta_{ij}$$

$$J_{CP} \equiv \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{13}\sin 2\theta_{23}\cos\theta_{13}\sin\delta. \qquad (2)$$

Current Neutrino Mass & Mixing Parameters

- $\Delta m_{32}^2 = m_3^2 m_2^2 = \pm 2.4(1) \times 10^{-3} \text{ eV}^2$ (atmospheric)
- $\Delta m_{21}^2 = m_2^2 m_1^2 = +7.6(2) \times 10^{-5} \text{ eV}^2$ (solar)

(Very precise Minos & KamLAND Measurements)

 $|\Delta m_{21}^2/\Delta m_{32}^2 \approx 1/30| \rightarrow CP Violation Exp Doable!$

Hierarchy m₃>m₁&m₂(normal) or m₃<m₁&m₂(inverted)?

Large Mixing!

$$\theta_{23} \sim 45^{\circ}$$
 $\sin^{2}2\theta_{23} = 1.0$ $(\theta_{23} \text{ or } 90^{\circ} - \theta_{23})$ (atm.)
 $\theta_{12} \sim 34^{\circ}$ $\sin^{2}2\theta_{12} = 0.87(3)$ (solar)
 $\theta_{13} \leq 11^{\circ}$ $\sin^{2}2\theta_{13} \leq 0.15$ (How Small?)
 $0 \leq \delta \leq 360^{\circ}$?

 $J_{CP} \approx 0.11 \sin 2\theta_{13} \sin \delta$ (potentially large!)

What do we still need to learn?

- 1. Value of θ_{13} ? (Reactors: $\sin^2 2\theta_{13} \rightarrow 0.01$) (Long Baseline $\nu_{\mu} \rightarrow \nu_{e} 0.003$)
- 2. Sgn Δm_{32}^2 ? (Important for Neutrinoless $\beta\beta$ Decay)
- 3. Value of δ?, J_{CP}?, <u>CP Violation? (Holy Grail)</u>
- 4. **Precision** Δm_{32}^2 , Δm_{21}^2 , θ_{23} , θ_{12} (better than 1%!)
- 5. "New Physics" Sterile v, <u>Very Weak</u> Long Distance Physics (*The Dark World*)...

Leptogenesis: Matter-Antimatter Asymmetry

- More baryons than antibaryons in our Universe
- Leptogenesis Scenario:
 - Heavy Majorana Neutrinos Created and Decay
 N→H⁻e⁺, H⁰vbar (<u>L & CP VIOLATION</u>)
 Leads to antilepton (excess)-lepton Asymmetry
- Electroweak Phase Transition (250GeV) (Baryogenesis)
 't Hooft Mechanism B-L Conserved (B&L Violated)
 antilepton excess→baryon (quark) excess by 1 in 109

Is L Violated in Nature? (Neutrinoless ββ Decay)
Is there Leptonic CP Violation? (v oscillations)
Indirect evidence for Leptogenesis (Best we can do.)

The Fundamental Importance of Neutrinos

Neutrino Physics May Be Responsible For Our Existence! (baryons & electrons)!

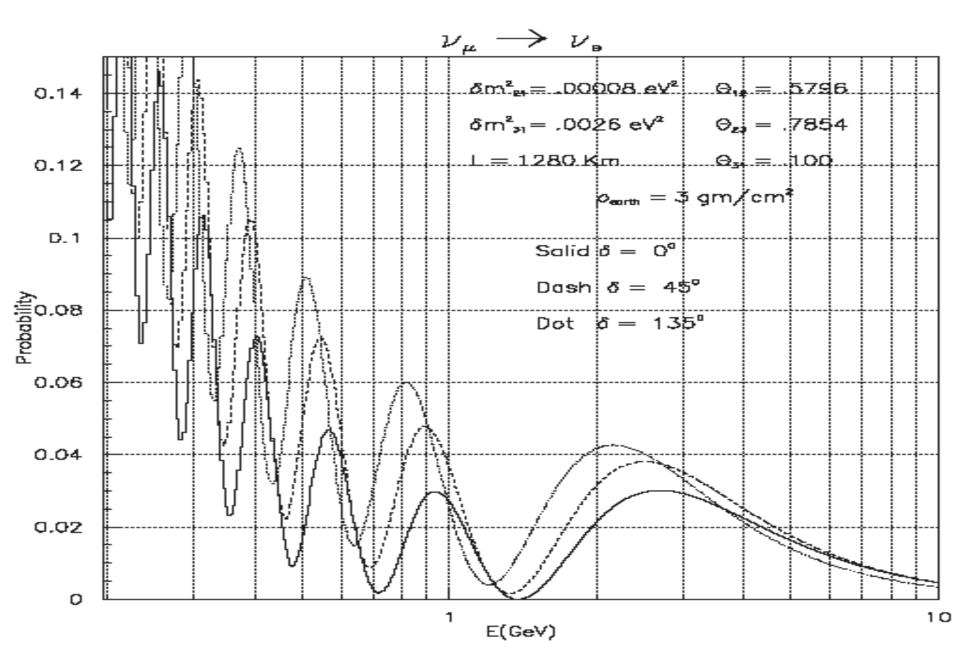
They help power the Sun (nuclear Reactions)

They Allow R Process in Supernova (Supernova - Heavy Elements)
We are the remnants of Supernovae

7. Leptonic CP Violation

$$P(\nu_{\mu} \rightarrow \nu_{e}) = P_{I}(\nu_{\mu} \rightarrow \nu_{e}) + P_{II}(\nu_{\mu} \rightarrow \nu_{e}) + P_{III}(\nu_{\mu} \rightarrow \nu_{e})$$

+ matter + smaller terms


$$\mathbf{P}_{I}(\nu_{\mu} \to \nu_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right)$$

$$\begin{aligned} \mathbf{P}_{II}(\nu_{\mu} \to \nu_{e}) &= \frac{1}{2} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13} \\ \sin \left(\frac{\Delta m_{21}^{2} L}{2E_{\nu}}\right) \times \left[\sin \delta \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \right. \\ &+ \cos \delta \sin \left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \cos \left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \right] \end{aligned}$$

$$\mathbf{P}_{III}(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta_{12} \cos^{2} \theta_{13} \cos^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E_{\nu}}\right)$$

For antineutrinos, $\delta \to -\delta$ and opposite matter effect.

FNAL

CP Violation Asymmetry

$$A_{CP} \equiv \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}$$
(3)

To leading order in Δm_{21}^2 (sin² $2\theta_{13}$ is not too small):

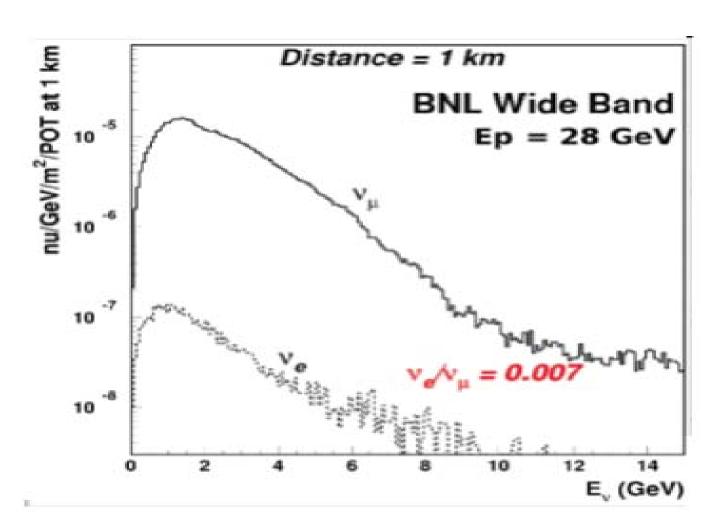
$$A_{CP} \simeq \frac{\cos \theta_{23} \sin 2\theta_{12} \sin \delta}{\sin \theta_{23} \sin \theta_{13}} \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right) + \text{matter effects}$$
 (4)

$$F.O.M. = \left(\frac{\delta A_{CP}}{A_{CP}}\right)^{-2} = \frac{A_{CP}^2 N}{1 - A_{CP}^2}$$
 (5)

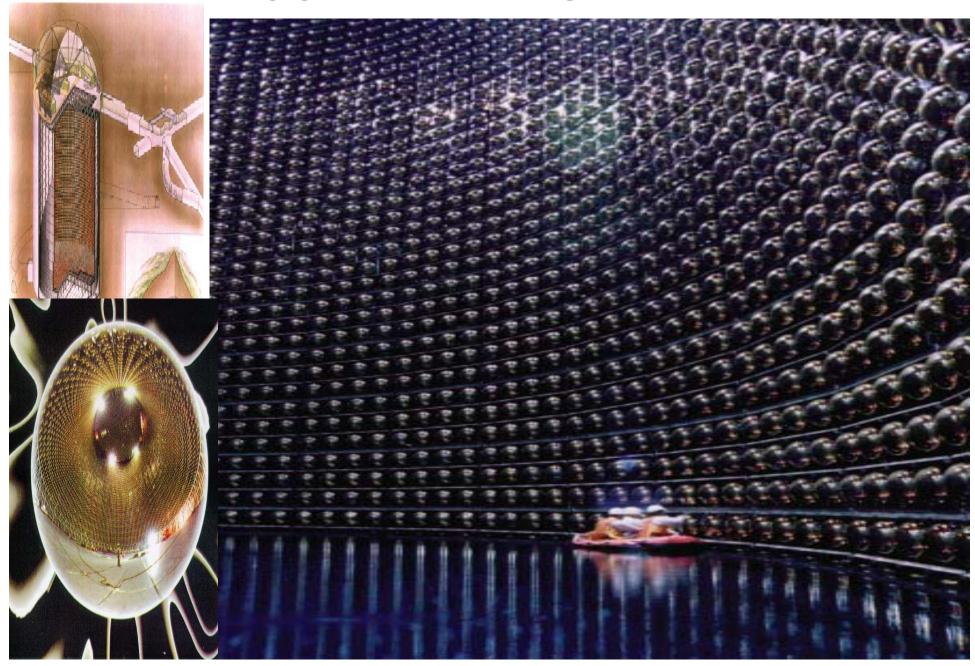
N is the total number of $\nu_{\mu} \rightarrow \nu_{\epsilon} + \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\epsilon}$ events. Since N falls (roughly) as $\sin^2\theta_{13}$ and $A_{CP}^2 \sim 1/\sin^2\theta_{13}$, to a first approximation the F.O.M. is independent of $\sin\theta_{13}$. Similarly, given E_{ν} the neutrino flux and consequently N falls as $1/L^2$ but that is canceled by L^2 in A_{CP}^2 .

i) CP Violation Insensitivities

• To a very good approx., our statistical ability to determine δ or A_{cp} is **independent** of $\sin^2 2\theta_{13}$ (down to ~ 0.003) and the detector distance L (for long distance).


ii) CP Violation Requirements

- Pick any reasonable θ_{13} (eg sin²2 θ_{13} =0.04)
- What does it take to measure δ to ±15° in about $5x10^7$ sec?


Answer (Approx.): 300kton Water Cerenkov Detector
Approx 20% Acceptance,
50 kton LArgon 90% Acceptance
or Hybrid combination

+ Traditional Horn Focused v WBB powered by 1-2MW proton accelerator (egs. Project X at FNAL)


Horn Focused Neutrino Beam

SUPER KAMIOKANDE

CP Phase Insensitivity to θ_{13} Value

-180₀

0.02 0.04 0.06 0.08

0.12

0.14 0.16

 $\sin^2 2\theta_{13}$

0.02 0.04 0.06 0.08

0.1

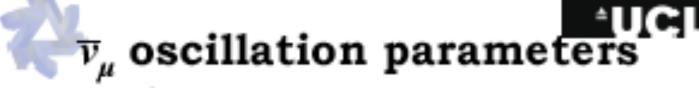
0.12 0.14 0.16

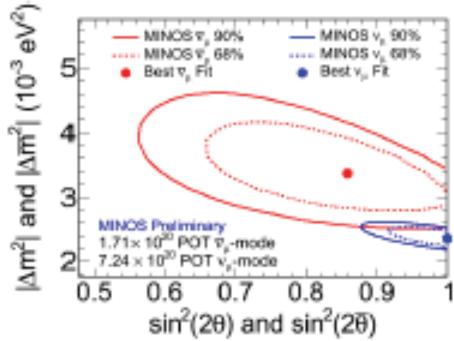
 $\sin^2 2\theta_{13}$

4. "New Physics" search via v_{μ} & v_{μ} disappearance

Disappearance at MINOS $\nu_{\mu} \rightarrow \nu_{\mu}$ & anti- $\nu_{\mu} \rightarrow$ anti- ν_{μ} show differences?

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta_{32} \sin^2(\Delta m_{32}^2 L/4E_{\nu})$$


$$v_{\mu} \rightarrow v_{\mu}$$
: $\Delta m_{32}^2 = 2.35(11)x10^{-3}eV^2$ $\sin^2 2\theta_{32} \sim 1 \ (>0.91)$ anti- $v_{\mu} \rightarrow antiv_{\mu}$: $\Delta m_{32}^2 = 3.36(45)x10^{-3}eV^2$, $\sin^2 2\theta_{32} = 0.86(11)$


2σ difference? 30%?

(Collaboration does not claim discrepancy!)

But good motivation to examine "New Physics" effects in neutrino oscillation experiments, since in the future one might expect better than 1% measurements!

Anticipate Surprises!

Contours include the effects of systematic uncertainties

22nd - 28th July 2009

Justin Evans

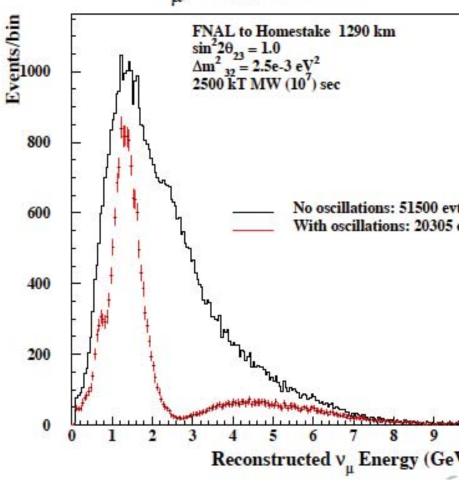
27

ν_{μ} Disappearance

Neutrino Running

- Total exposure: 2500 kT.MW.(10⁷).sec
- 195000 CC evts/6yrs: 2MW-FNAL, 100kT-HS
- Use only clean single muon events.

Measurements


- 1% determination of Δm_{32}^2
- 1% determination of $\sin^2 2\theta_{23}$
- Most likely systematics limited.

$\bar{\nu}$ running

- Need twice the exposure for similar size data set.
- very precise CPT test possible.

Very easy to get this effect Does not need extensive pattern recognition. Can enhance the secon minimum by background subtracti

ν_{μ} disappearance

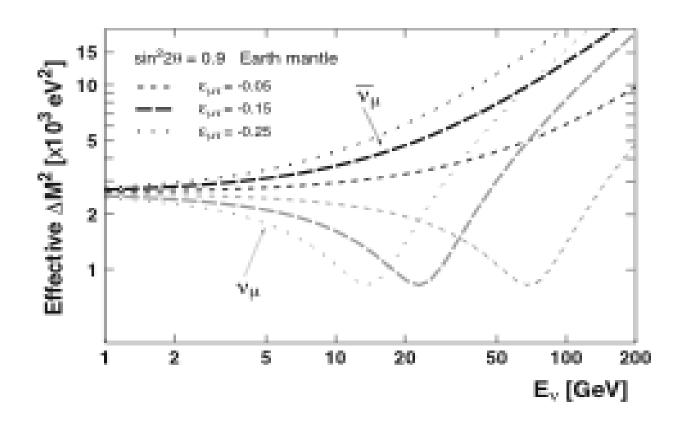
 Δm_{32}^2 and $\sin^2 2\theta_{32}$ can be measured in long baselines as functions of E_v (also obtained from atmospheric v).

$$v_u \rightarrow v_u$$
 & anti- v_u \rightarrow anti- v_u Comparison

Usually phrased as a test of CPT (true in vacuum)

Apparent CPT violation \rightarrow "New Physics" in ν interactions (in matter or) $\epsilon \sqrt{2G_F \nu \gamma_\mu \nu}$ " if $\gamma^\mu f$, f=e, u, d long range interactions Potential changes $sign \nu_\mu \rightarrow anti-\nu_\mu$ Sterile Neutrinos? etc

"General bounds on non-standard neutrino interactions" by Biggio, Blennow and Fernandez-Martinez (2009) Using solar and atmosheric oscillation data in $\nu_e \nu_\mu \nu_\tau$ space


(Bounds being updated-Take with a grain of salt)

ε represents the size of the "New Physics" potential relative to MSW potential (Weak Strength $\sqrt{2}G_F\nu_e\gamma_\mu\nu_e$ eγμe)

Some Interesting Recent ε≠0 Examples

```
Engelhardt, Nelson and Walsh: sterile neutrinos & gauge B-L
                                                     new long distance physics
                                                     weakly coupled
<u>Heeck and Rodejohann</u>: gauge L_{\mu}-L_{\tau} (violate e-\mu-\tau universality)
                                   very long range interaction, m<sub>V</sub><10<sup>-18</sup>eV!
Earlier: Joshipura & Mohanty Gauged L<sub>e</sub>-L<sub>μ</sub>, L<sub>e</sub>-L<sub>τ</sub>, L<sub>μ</sub>-L<sub>τ</sub>
                                                      Fifth Force: α'≈10<sup>-52</sup>!
Mann et al.: New v_{\mu} \rightarrow v_{\tau} Interaction \epsilon_{\mu\tau} \sim -0.1 (see figure, some
                                                               generic features)
Either O(\alpha/\Lambda^2) \Lambda large or O(\alpha'/m^2) \alpha' and m small (long distance)
                Effective potential changes sign for v_u \rightarrow anti-v_u
          All lead to different v_{\mu} and anti-v_{\mu} oscillations (in matter)
                E, Dependence of Oscillation Parameters
```

From Mann, Cherdack, Musial and Kafka (Example)

$\nu_{\mu} \rightarrow \nu_{\mu}$ and anti- $\nu_{\mu} \rightarrow$ anti- ν_{μ} disappearance

$$\begin{array}{lll} \bullet & \text{id/dt} \; | \; \nu_{\mu}(t) \; | = \; | \; \Delta m^2_{32} s^2 / 2 p_{\nu} & \; \Delta m^2_{32} s c / 2 p_{\nu} & \; | \; \; | \; \nu_{\mu}(t) | \\ & | \; \nu_{\tau}(t) \; | \; \; | \; \Delta m^2_{32} s c / 2 p_{\nu} & \; \Delta m^2_{32} c^2 / 2 p_{\nu} - p_{\nu} (n_{\nu\tau} - n_{\nu\mu}) \; | \; \; | \; \nu_{\tau}(t) | \\ & s = sin\theta_{V} \; \; c = cos\theta_{V} \\ \end{array}$$

Could also be off diagonal matter effects, eg Mann et al

$$\begin{split} L_{\nu} &= 2(2p_{\nu}/\Delta m^2_{32}) \sim 1000 (E_{\nu}/1 GeV) km \\ L_{0} &= 2\pi/p_{\nu} (n_{\nu\tau} - n_{\nu\mu}) \sim 5000/\epsilon km \quad \text{Refraction index length} \\ y &= L_{\nu}/L_{0} \sim E_{\nu} \epsilon/5 GeV \quad \text{(Big Effects For y} \sim O(1)) \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) &= 1 - \sin^2 2\theta_{m} \sin^2(\pi x/L_{m}) \text{ disappearance} \end{split}$$

(Suggests studies at high energies & long distances)

E_ν>5GeV/ε Atmospheric & Very Long Baseline

Best Bet – Deep Core in Ice Cube E≈ 20GeV

$$\sin^2 2\theta_{\rm m} = \sin^2 2\theta_{\rm V} / (1 \pm 2y \cos 2\theta_{\rm V} + y^2) \qquad \qquad \mathbf{y} = \mathbf{L}_{\rm V} / \mathbf{L}_{\mathbf{0}} \sim \mathbf{E}_{\rm v} \epsilon / \mathbf{5} \mathbf{GeV}$$

$$\mathbf{L}_{\rm m} = \mathbf{L}_{\rm V} / (1 \pm 2y \cos 2\theta_{\rm V} + y^2)^{1/2} \qquad \qquad \text{for 3 gm/cm}^3$$

 Δm_{32}^2 (matter)= $\Delta m_{32}^2 (1 \pm 2y \cos 2\theta_V + y^2)^{1/2}$

for y>>1 oscillations highly suppressed $L_m \sim L_0$

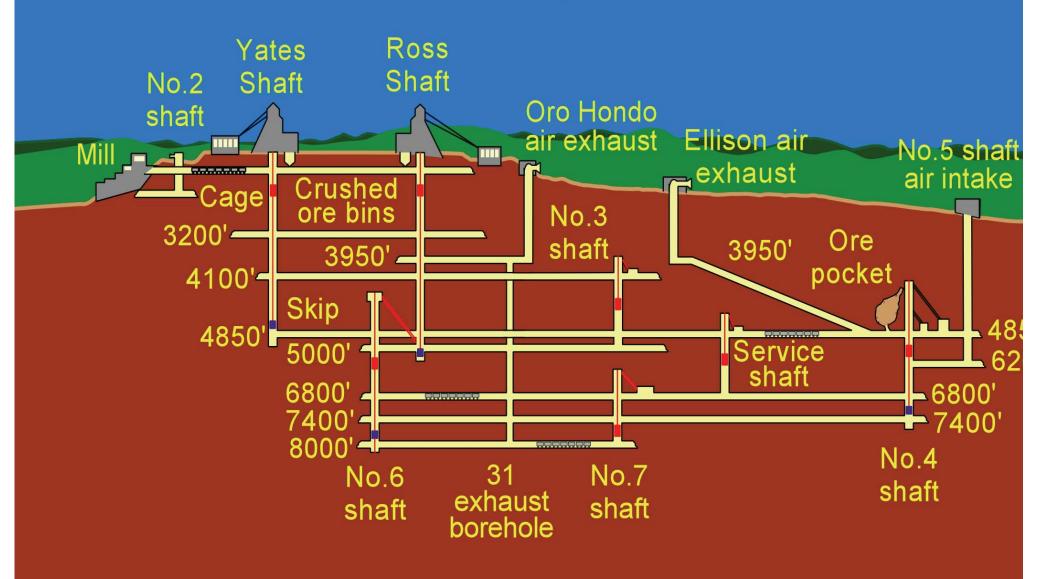
for y<<1 matter effects very small

Resonance y=cos2 θ_V \rightarrow θ_m =45°, minimum Δm^2_{32} (matter)= $\Delta m^2_{32} \sin 2\theta_V$

No resonance for maximal vacuum mixing θ_{V} =45° (our world) No Δm^{2}_{32} difference in v_{μ} vs anti- v_{μ} for θ_{V} =45° (but depends on E_{v}) Note high E_{v} more sensitive to matter! Anticipate possible differences in v_{μ} and $\mathbf{W}v_{\mu}$ effective energy dependent mixing angles and Δm^2_{32} in matter

Future experiments will measure those parameters with very high precision! Atmospheric as well as Long Baseline ν_{μ} and $\mathbf{W}\nu_{\mu}$ disappearance will be very powerful probes of non standard (long and short distance) neutrino interactions!

Note, $v_{\mu} \rightarrow v_{\tau}$ and anti- $v_{\mu} \rightarrow$ anti- v_{τ} appearance potentially very interesting


Moral: Neutrino v_{μ} and anti- v_{μ} Osc in Matter provides a potentially powerful probe of (weakly coupled) <u>light</u> and heavy "New Physics". Particularly light $\varepsilon \sim \alpha$ "/ G_F m^2

(Does not depend sensitively on $sin^2 2\theta_{13}$ value!)

5. Outlook

- Neutrino exps will advance: θ₁₃ Mass Hierarchy, ν CP Violation
 ... via LBNE Requires Big Detector: 300kton H₂O or equivalent
 2MW Accelerator wide band neutrino beam
- Also
- Atmospheric & Solar v
- 100,000 supernova ν events (if in our galaxy)!
- Observe relic supernova v (universe history)!
- "New Physics": sterile v, extra dim. dark energy...
- Proton decay, n-anti-n osc.,...magnetic monopoles
 The potential for major discoveries & surprises is great!

General Homestake Mine Development

Supernova Neutrinos

 SN 1987A: 19 events observed by Kamiokande & IMB anti-v_ep→e+n Great Discovery - Confirmed SN Models A SN in our galaxy (every ~ 40yr) at typical10kpc would lead to about 100,000 anti-v_ep→e+n events/300kton H₂O Also, $ve \rightarrow ve$, $(v=v_e, v_u, v_\tau, +antineutrinos) ~ 1000events$ We would like to see $v_e + ^{40}Ar \rightarrow e^- + ^{40}K$ (initial burst) ~250 events/kton LArgon Neutrino Spectrum → SN Dynamics & Oscillations Extremely Rich Discovery Possible We must have as many detectors as possible online Relic SN Neutrinos (10-40MeV) S/B/yr ~10/10

Fermilab Activities

- What does Fermilab do after the LHC starts?
- (Great Hope ILC e⁺e⁻ Collider (μ+μ- Collider?))
 In the meantime? New Working Group Report
 Project X Option 2MW 8GeV proton linac (ILC R&D)
 8GeV fixed target program (eg. μN→eN...)
- + Main Injector 30-120GeV (also at 2MW)
 2MW at 50GeV provides nice neutrino beam for
 FNAL-Homestake (Cost ?) Total Project ≈\$1-2 Billion

Doable! Must Do!

(START AS SOON AS POSSIBLE!)