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Plan for the Lectures

Lecture I: Supersymmetry Introduction

1 Why supersymmetry?

2 Basics of Supersymmetry

3 R Symmetries (a theme in these lectures)

4 SUSY soft breakings

5 MSSM: counting of parameters

6 MSSM: features
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Lecture II: Microscopic supersymmetry: supersymmetry

breaking

1 Nelson-Seiberg Theorem (R symmetries)

2 O’Raifeartaigh Models

3 The Goldstino

4 Flat directions/pseudomoduli: Coleman-Weinberg vacuum

and finding the vacuum.

5 Integrating out pseudomoduli (if time) – non-linear

lagrangians.
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Lecture III: Dynamical (Metastable) Supersymmetry

Breaking

1 Non-renormalization theorems

2 SUSY QCD/Gaugino Condensation

3 Generalizing Gaugino condensation

4 A simple – dumb – approach to Supersymmetry Breaking:

Retrofitting.

5 Other types of metastable breaking: ISS (Intriligator, Shih

and Seiberg)

6 Retrofitting – a second look. Why it might be right

(cosmological constant!).
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Lecture IV: Mediating Supersymmetry Breaking

1 Gravity Mediation

2 Minimal Gauge Mediation (one – really three) parameter

description of the MSSM.

3 General Gauge Mediation

4 Assessment.
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Supersymmetry

Virtues

1 Hierarchy Problem

2 Unification

3 Dark matter

4 Presence in string theory (often)
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Hierarchy: Two Aspects

1 Cancelation of quadratic divergences

2 Non-renormalization theorems (holomorphy of gauge

couplings and superpotential): if supersymmetry unbroken

classically, unbroken to all orders of perturbation theory,

but can be broken beyond: exponentially large hierarchies.
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But reasons for skepticism:

1 Little hierarchy

2 Unification: why generic (grand unified models; string

theory?)

3 Hierarchy: landscape (light higgs anthropic?)
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Reasons for (renewed) optimism:

1 The study of metastable susy breaking (ISS) has opened

rich possibilities for model building; no longer the

complexity of earlier models for dynamical supersymmetry

breaking.

2 Supersymmetry, even in a landscape, can account for

hierarchies, as in traditional thinking about naturalness

(e
− 8π

2

g2 )

3 Supersymmetry, in a landscape, accounts for stability – i.e.

the very existence of (metastable) states.
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Supersymmetry Review

Basic algebra:

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ.
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Superspace

It is convenient to introduce an enlargement of space-time,

known as superspace, to describe supersymmetric systems.

One does not have to attach an actual geometric interpretation

to this space (though this may be possible) but can view it as a

simple way to realize the supersymmetry algebra. The space

has four additional, anticommuting (Grassmann) coordinates,

θα, θ̄α̇. Fields (superfields) will be functions of θ, θ̄ and xµ.

Acting on this space of functions, the Q’s and Q̄’s can be

represented as differential operators:

Qα =
∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ; Q̄α̇ =

∂

∂θ̄α̇
− iθασµ

αβ̇
ǫβ̇α̇∂µ. (1)
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Infinitesimal supersymmetry transformations are generated by

δΦ = ǫQ + ǭQ̄. (2)

It is also convenient to introduce a set of covariant derivative

operators which anticommute with the Qα’s, Q̄α̇’s:

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ; D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αβ̇
ǫβ̇α̇∂µ. (3)
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Chiral and Vector Superfields

There are two irreducible representations of the algebra which

are crucial to understanding field theories with N = 1

supersymmetry: chiral fields, Φ, which satisfy D̄α̇Φ = 0, and

vector fields, defined by the reality condition V = V †. Both of

these conditions are invariant under supersymmetry

transformations, the first because D̄ anticommutes with all of

the Q’s. In superspace a chiral superfield may be written as

Φ(x , θ) = A(x) +
√

2θψ(x) + θ2F + . . . (4)

Here A is a complex scalar, ψ a (Weyl) fermion, and F is an

auxiliary field, and the dots denote terms containing derivatives.

Michael Dine Supersymmetry and the LHC



More precisely, Φ can be taken to be a function of θ and

yµ = xµ − iθσµθ̄. (5)

Under a supersymmetry transformation with anticommuting

parameter ζ, the component fields transform as

δA =
√

2ζψ, (6)

δψ =
√

2ζF +
√

2iσµζ̄∂µA, δF = −
√

2i∂µψσ
µζ̄. (7)
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Vector fields can be written, in superspace, as

V = iχ− iχ† + θσµλ̄Aµ + iθ2θ̄λ̄− i θ̄2θλ+
1

2
θ2θ̄2D. (8)

Here χ is a chiral field.
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In order to write consistent theories of spin one fields, it is

necessary to enlarge the usual notion of gauge symmetry to a

transformation of V and the chiral fields Φ by superfields. In the

case of a U(1) symmetry, one has

Φi → eqiΛΦi V → V − Λ− Λ†. (9)

Here Λ is a chiral field (so the transformed Φi is also chiral).

Note that this transformation is such as to keep

Φi†eqi V Φi (10)

invariant. In the non-abelian case, the gauge transformation for

Φi is as before, where Λ is now a matrix valued field.
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For the gauge fields, the physical content is most transparent in

a particular gauge (really a class of gauges) know as

Wess-Zumino gauge. This gauge is analogous to the Coulomb

gauge in QED. In that case, the gauge choice breaks manifest

Lorentz invariance (Lorentz transformations musts be

accompanied by gauge transformations), but Lorentz

invariance is still a property of physical amplitudes. Similarly,

the choice of Wess-Zumino gauge breaks supersymmetry, but

physical quantities obey the rules implied by the symmetry. In

this gauge, the vector superfield may be written as

V = −θσµλ̄Aµ + iθ2θ̄λ̄− i θ̄2θλ+
1

2
θ2θ̄2D. (11)
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The analog of the gauge invariant field strength is a chiral field:

Wα = −1

4
D̄2DαV (12)

or, in terms of component fields:

Wα = −iλα + θαD − i

2
(σµσ̄νθ)αFµν + θ2σµ

αβ̇
∂µλ̄

β̇. (13)
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In the non-Abelian case, the fields V are matrix valued, and

transform under gauge transformations as

V → e−Λ†

VeΛ (14)

Correspondingly, for a chiral field transforming as

Φ → eΛΦ (15)

the quantity

Φ†eV Φ (16)

is gauge invariant.
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The generalization of Wα of the Abelian case is the

matrix-valued field:

Wα = −1

4
D̄2e−V DαeV , (17)

which transforms, under gauge transformations, as

Wα → e−ΛWαeΛ. (18)
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Supersymmetric Actions

To construct an action with N = 1 supersymmetry, it is

convenient to consider integrals in superspace. The integration

rules are simple:

∫

d2θθ2 =

∫

d2θ̄θ̄2 = 1;

∫

d4θθ̄2θ2 = 1, (19)

all others vanishing. Integrals
∫

d4xd4θF (θ, θ̄) are invariant, for

general functions θ, since the action of the supersymmetry

generators is either a derivative in θ or a derivative in x .

Integrals over half of superspace of chiral fields are invariant as

well, since, for example,

Q̄α̇ = D̄α̇ + 2iθασµ
αα̇∂µ (20)

so, acting on a chiral field (or any function of chiral fields, which

is necessarily chiral), one obtains a derivative in superspace.
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In order to build a supersymmetric lagrangian, one starts with a

set of chiral superfields, Φi , transforming in various

representations of some gauge group G. For each gauge

generator, there is a vector superfield, V a. The most general

renormalizable lagrangian, written in superspace, is

L =
∑

i

∫

d4θΦ†i e
V Φi +

∑

a

1

4g2
a

∫

d2θW 2
α (21)

+c.c.+

∫

d2θW (Φi) + c.c.

Here W (Φ) is a holomorphic function of chiral superfields

known as the superpotential.
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Component lagrangians

In terms of the component fields, the lagrangian includes kinetic

terms for the various fields (again in Wess-Zumino gauge):

Lkin =
∑

i

(

|Dφi |2 + iψiσ
µDµψ

∗
i

)

−
∑

a

1

4g2
a

(

F a
µνF aµν − iλaσµDµλ

a∗
)

.(22)

There are also Yukawa couplings of “matter" fermions (fermions

in chiral multiplets) and scalars, as well as Yukawa couplings of

matter and gauge fields:

Lyuk = i
√

2
∑

ia

(gaψiT a
ij λ

aφ∗j + c.c.)+
∑

ij

1

2

∂2W

∂φi∂φj
ψiψj . (23)
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We should note here that we will often use the same label for a

chiral superfield and its scalar component; this is common

practice, but we will try to modify the notation when it may be

confusing. The scalar potential is:

V = |Fi |2 +
1

2
(Da)2. (24)

The auxiliary fields Fi and Da are obtained by solving their

equations of motion:

F
†
i = −∂W

∂φi
Da = ga

∑

i

φ∗i T a
ij φj . (25)
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A Simple Free Theory

To illustrate this discussion, consider first a theory of a single

chiral field, with superpotential

W =
1

2
mφ2. (26)

Then the component Lagrangian is just

L = |∂φ|2 + iψσµ∂µψ +
1

2
mψψ + c.c.+ m2|φ|2. (27)

So this is a theory of a free massive complex boson and a free

massive Weyl fermion, each with mass m2. (I have treated here

m2 as real; in general, one can replace m2 by |m|2).
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An Interacting Theory – Supersymmetry

Cancelations

Now take

W =
1

3
λφ3. (28)

The interaction terms in L are:

LI = λφψψ + λ2|φ|4. (29)

The model has an R symmetry under which

φ→ e2iα/3φ; ψ → e−2iα/3ψ; W → e2iαW . (30)
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Aside: R Symmetries

Such symmetries will be important in our subsequent

discussions. They correspond to the transformation of chiral

fields:

Φi → eiriαΦi ; θ → eiαθ (31)

Then

Q → e−iαQ; W → e2iαW (32)

and

φi → eiriαφi ; ψi → e(ri−1)αψi Fi → ei(ri−2)αFi . (33)

The gauginos also transform:

λ→ eiαλ. (34)
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Supersymmetry Cancelation and Soft Breaking

(continued)

The symmetry means that there can be no correction to the

fermion mass, or to the superpotential. Let’s check, at one loop,

that there is no correction to the scalar mass. Two

contributions:
1 Boson loop:

δm2
φ = 4λ2 d4k

(2π)4

1

k2
(35)

2 Fermion loop:

δm2
φ = −2λ2 d4k

(2π)4

Tr(σµkµσ̄
νkν)

k4
. (36)

In the first expression, the 4 is a combinatoric factor; in the
second, the minus sign arises from the fermion loop; the 2 is a
combinatoric factor.
These two terms, each separately quadratically divergent,
cancel.
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Now add to the lagrangian a “soft", non-supersymmetric term,

δL = −m2|φ|2. (37)

This changes the scalar propagator above, so

δm2
φ = 4λ2

∫

d4k

(2π)4

(

1

k2 + m2
− 1

k2

)

(38)

=

∫

d4k

(2π)4

−m2

k2(k2 + m2)

≈ λ2m2

16π2
log(Λ2/m2).

Here Λ is an ultraviolet cutoff. Note that these corrections

vanish as m2 → 0.
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More generally, possible soft terms are:

1 Scalar masses

2 Gaugino masses

3 Cubic scalar couplings.

All have dimension less than four.
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The MSSM and Soft Supersymmetry Breaking

MSSM:A supersymmetric generalization of the SM.

1 Gauge group SU(3)× SU(2)× U(1); corresponding (12)

vector multiplets.

2 Chiral field for each fermion of the SM: Qf , ūf , d̄f ,Lf , ēf .

3 Two Higgs doublets, HU ,HD.

4 Superpotential contains a generalization of the Standard

Model Yukawa couplings:

Wy = yUHUQŪ + yDHDQD̄ + yLHDĒ . (39)

yU and yD are 3× 3 matrices in the space of flavors.
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Soft Breaking Parameters

Need also breaking of supersymmetry, potential for quarks and

leptons. Introduce explicit soft breakings:
1 Soft mass terms for squarks, sleptons, and Higgs fields:

Lscalars = Q∗m2
QQ + Ū∗m2

UŪ + D̄∗m2
DD̄ (40)

+L∗m2
LL + Ē∗mE Ē

+m2
HU
|HU |2 + m2

HU
|HU |2 + BµHUHD + c.c.

m2
Q, m2

U , etc., are matrices in the space of flavors.
2 Cubic couplings of the scalars:

LA = HUQ AU Ū + HDQ AD D̄ (41)

+HDL AE Ē + c.c.

The matrices AU , AD, AE are complex matrices
3 Mass terms for the U(1) (b), SU(2) (w), and SU(3) (λ)

gauginos:

m1bb + m2ww + m3λλ (42)

So we would seem to have an additional 109 parameters.Michael Dine Supersymmetry and the LHC



Counting the Soft Breaking Parameters

1 φφ∗ mass matrices are 3× 3 Hermitian (45 parameters)

2 Cubic terms are described by 3 complex matrices (54

parameters

3 The soft Higgs mass terms add an additional 4 parameters.

4 The µ term adds two.

5 The gaugino masses add 6.

There appear to be 111 new parameters.
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But Higgs sector of SM has two parameters.

In addition, the supersymmetric part of the MSSM lagrangian

has symmetries which are broken by the general soft breaking

terms (including µ among the soft breakings):

1 Two of three separate lepton numbers

2 A “Peccei-Quinn" symmetry, under which HU and HD rotate

by the same phase, and the quarks and leptons transform

suitably.

3 A continuous "R" symmetry, which we will explain in more

detail below.

Redefining fields using these four transformations reduces the

number of parameters to 105.

If supersymmetry is discovered, determining these parameters,

and hopefully understanding them more microscopically, will be

the main business of particle physics for some time. The

phenomenology of these parameters has been the subject of

extensive study; we will focus on a limited set of issues.
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Constraints

Direct searches (LEP, Fermilab) severely constrain the

spectrum. E.g. squark, gluino masses > 100’s of GeV,

charginos of order 100 GeV. Spectrum must have special

features to explain

1 Absence of Flavor Changing Neutral Currents (suppression

of K ↔ K̄ , D ↔ D̄ mixing; B → s + γ, µ→ e + γ, . . . )

2 Suppression of CP violation (dn; phases in K K̄ mixing).

Might be accounted for if spectrum highly degenerate, CP

violation in soft breaking suppressed.
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The little hierarchy: perhaps the greatest challenge for

Supersymmetry

Higgs mass and little hierarchy:

Biggest contribution to the Higgs mass from top quark loops.

Two graphs; cancel if supersymmetry is unbroken. Result of

simple computation is

δm2
HU

= −6
y2

t

16π2
m̃2

t ln(Λ2/m̃2
t ) (43)

Even for modest values of the coupling, given the limits on

squark masses, this can be substantial.
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But another problem: mH > 114 GeV. At tree level mH ≤ mZ .

Loop corrections involving top quark: can substantially correct

Higgs quartic, and increase mass. But current limits typically

require m̃t > 800 GeV. Exacerbates tuning. Typically worse

than 1 %.

δλ ∼ 3
y4

t

16π2
log(m̃2

t /m
2
t ). (44)

Possible solution: additional physics, Higgs coupling corrected

by dimension five term in superpotential or dimension six in

Kahler potential.

δW =
1

M
HUHDHUHD δK = Z †ZH

†
UHUH

†
UHU . (45)

Michael Dine Supersymmetry and the LHC



Aside on Two Component Spinors

We have been using two component spinors up to now, but

these may be unfamiliar to some of you. So the following few

pages demonstrate how four component spinors are equivalent

to two component spinors, and how everything can be

described in terms such two component spinors.
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Writing a Relativistic Equation for Massless Fermions

If we were living in 1930, and wanted to write a relativistic wave

equation for massless fermions, we might proceed as follows.

Write:

σµ∂µχ = 0. (46)

We want χ to satisfy the Klein-Gordan equation. This will be the

case if we can find a set of matrices, σ̄µ, which satisfy

σ̄µσν + σ̄νσµ = 2gµν . (47)

Unlike the massive case, we can satisfy this requirement with

2× 2 matrices:

σµ = (1, ~σ); σ̄µ = (1,−~σ). (48)
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In momentum space, this equation is remarkably simple:

(E − ~p · ~σ)χ = 0. (49)

For positive energies, this says that the spin is aligned along

the momentum. For negative energy spinors, the spin is

aligned opposite to the momentum.

Exercise: Write the mode expansion for χ(x), and identify

suitable creation and destruction operators.
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Connecting to Four Component Spinors

Adopt the following basis for the γ matrices:

γµ =

(

0 σµ

σ̄µ 0

)

(50)

In this basis,

γ5 = iγoγ1γ2γ3 =

(

1 0

0 −1

)

, (51)

so the projectors

P± =
1

2
(1± γ5) (52)

are given by:

P+ =

(

1 0

0 0

)

P− =

(

0 0

0 1

)

. (53)
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We will adopt some notation, following the text by Wess and

Bagger:

ψ =

(

χα

φ∗α̇

)

. (54)

Correspondingly, we label the indices on the matrices σµ and

σ̄µ as

σµ = σµ
αα̇ σ̄µ = σ̄µββ̇ . (55)

This allows us to match upstairs and downstairs indices, and

will prove quite useful. We define complex conjugation to

change dotted to undotted indices. So, for example,

φ∗α̇ = (φα)∗. (56)
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Then we define the anti-symmetric matrices ǫαβ and ǫαβ by:

ǫ12 = 1 = −ǫ21 ǫαβ = −ǫαβ . (57)

The matrices with dotted indices are defined identically. Note

that, with upstairs indices, ǫ = iσ2, ǫαβǫ
βγ = δγ

α. We can use

these matrices to raise and lower indices on spinors. Define

φα = ǫαβφ
β , and similarly for dotted indices. So

φα = ǫαβ(φ∗β̇)∗. (58)
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Finally, we will define complex conjugation of a product of

spinors to invert the order of factors, so, for example,

(χαφβ)∗ = φ∗
β̇
χ∗α̇.

With this in hand, the reader should check that the action for

our original four component spinor is:

S =

∫

d4xL =

∫

d4x
(

iχα̇σ̄
µα̇α∂µχα + iφασµ

αα̇∂µφ
∗α̇

)

(59)

=

∫

d4xL =

∫

d4x
(

iχασµ
αα̇∂µχ

∗α̇ + iφασµ
αα̇∂µφ

∗α̇
)

.

Michael Dine Supersymmetry and the LHC



At the level of Lorentz-invariant lagrangians or equations of

motion, there is only one irreducible representation of the

Lorentz algebra for massless fermions.

It is instructive to describe quantum electrodynamics with a

massive electron in two-component language. Write

ψ =

(

e

ē∗

)

. (60)

In the lagrangian, we need to replace ∂µ with the covariant

derivative, Dµ. e contains annihilation operators for the

left-handed electron, and creation operators for the

corresponding anti-particle. ē contains annihilation operators

for a particle with the opposite helicity and charge of e, and ē∗,

and creation operators for the corresponding antiparticle.

Michael Dine Supersymmetry and the LHC



The mass term, mψ̄ψ, becomes:

mψ̄ψ = meαēα + me∗α̇ē∗α̇. (61)

Again, note that both terms preserve electric charge. Note also

that the equations of motion now couple e and ē.
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It is helpful to introduce one last piece of notation. Call

ψχ = ψαχα = −ψαχ
α = χαψα = χψ. (62)

Similarly,

ψ∗χ∗ = ψ∗α̇χ
∗α̇ = −ψ∗α̇χ∗α̇χ∗α̇ψ∗α̇ = χ∗ψ∗. (63)

Finally, note that with these definitions,

(χψ)∗ = χ∗ψ∗. (64)
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Exercise: Starting with the action for the four component

electron, with a mass term, work verify the lagrangian in two

component notation for the massive electron. Make sure to

work out the covariant derivatives.
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