

2244-18

Summer School on Particle Physics

6 - 17 June 2011

Neutrino at Collider - II

Fabrizio NESTI Universita' degli Studi dell'Aquila Italy

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R Δ_L,R Direct $\ell\ell jj$ Summary

Neutrino at Collider - II

"Parity restored at TeV scale?"

Fabrizio Nesti

Università dell'Aquila

Summer School on Particle Physics ICTP — April 2011

... may become incompatibile in the near future.

In this case, need new physics beyond light neutrinos!

F. Nesti

New Physics - where?

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R Δ_L,R Direct $\ell\ell jj$ Summary If m_{ν}^{ee} excluded by cosmology, can New Physics do the job? Try to guess at the level of effective operators...

■ The 'New Physics' operator is dimension 9

$$O_{NP} = \lambda \frac{nnppee}{\Lambda^5}$$

Require new physics amplitude to saturate $m_{
u}^{ee} \sim eV$

$$A^{NP}_{0
u} = rac{\lambda}{\Lambda^5} \qquad \leftrightarrow \qquad A^{m_
u}_{0
u} = G^2_F \, rac{m_
u}{p^2}$$

Result, the amplitudes are comparable for $(\text{say } \lambda \sim G_F^2 M_W^4)$

 $\Lambda \sim TeV.$

... something would be expected at collider.

F. Nesti

Hint: Quantum Numbers

New Physics?

LR

Model Scale

New physics - what?

Need to generate Majorana neutrino mass

E.g. type-I seesaw:

(y and M quite free)

 $y\,\bar{\ell}H\nu_R + M\nu_R^t\nu_R$

■ So...maybe *M* hints to something? New interactions? ...e.g.: *M* breaks lepton number, *B* − *L*, ...

Let's take it low:

■ Maybe we can test a TeV *M* and new forces at LHC? (Yes, because of ∠ at collider.)

Which forces?

Hints from quantum numbers...

Collider Low scale W_R Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

SM – More symmetric

F. Nesti

New Physics?

Low scale W_R Limits ΚĀ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct llji

LR

New Physics?		Lorentz	Q	Y	$SU(2)_L$	$SU(2)_R$	B-L	<i>SU</i> (3)
R Hint: Quantum			$(Y+T{3L})$	$(T_{3R}+\frac{(B-L)}{2})$	T _{3L}	T_{3R}		
Numbers Model	иL	2	2/3	1/6	1/2	0	1/3	3
Scale	d_L	2	-1/3	1/6	-1/2	0	1/3	3
ow scale <i>W</i> p	ν_L	2	0	-1/2	1/2	0	-1	1
Limits	eL	2	-1	- 1/2	-1/2	0	-1	1
KK Pvs C	u _R	2	2/3	2/3	0	1/2	1/3	3
$0\nu\beta\beta$ Collider	d _R	2	-1/3	-1/3	0	-1/2	1/3	3
$W_{R}^{-\nu}R$	ν_R	2	0	0	0	1/2	-1	1
$\Delta L, R$ Direct	e _R	2	-1	-1	0	-1/2	-1	1

Summary

- Right fermions, SM singlets...
 - ... actually doublets of a "right"-isospin group $SU(2)_R$.
- We *needed* the RH neutrino.
- Note, $Y = T_{3R} + (B L)/2 \rightarrow Q = T_{3L} + T_{3R} + (B L)/2$
- B L clearly anomaly free.

Also the path to unifications

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R^{-\nu}R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Looking into fermion quantum numbers opens the view on unification setups

 $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$

$q_L \in ({f 2},{f 1},1/3,{f 3})$	$q_R \in (1,2,1/3,3)$
$\ell_L \in (2,1,-1,1)$	$\ell_{ extsf{R}} \in (1,2,-1,1)$

... one naturally tries to unify different factors:

- Pati-Salam: $SU(2)_L \times SU(2)_R \times SU(4)$ [Pati Salam '74; Georgi '75] $(q_L + \ell_L) = \psi_L \in (\mathbf{2}, \mathbf{1}, \mathbf{4}) \qquad (q_R + \ell_R) = \psi_R \in (\mathbf{1}, \mathbf{2}, \mathbf{4}).$
- GUT: *SO*(10) [Georgi, '75, Fritzsch Minkowski '75]

$$\psi_L + \psi_R^c \in (2, 1, 4) + (1, 2, \overline{4}) = 16$$

■ *Gravi*GUT: *SO*(3, 11)

[FN '07, FN Percacci '09]

 $(\mathbf{2}_{\textit{Lorentz}}, \mathbf{16}_{\textit{SO}(10)}) = \mathbf{64}_{\textit{MW}}$.

F. Nesti

Parity restoration?

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider W_R - ν_R $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary So: the SM with minimal extension can restore parity!

By restoration of parity here we mean a generalization: Interchange $\psi_L \leftrightarrow \psi_R$ and also gauge groups $SU(2)_L \leftrightarrow SU(2)_R$.

Left-Right symmetry

[Pati Salam '74, Mohapatra Pati '75, Senjanović Mohapatra '75] Note: Lee Yang in '56 suggesting P, also hoped for its restoration!

• Need the extension of $U(1)_Y \subset SU(2)_R \times U(1)_{B-L}$

■ Need of course an extended Higgs sector, for the breaking.

The RH neutrino.

To see the predictions, let's look at the model

Left-Right models

F. Nesti

New Physics?

LR

Hint: Quantum Numbers

Model

Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary ■ The gauge group:

 $SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$

Fermions:

Quarks $q_{L,R}$, Leptons $\ell_{L,R}$.

Gauge bosons

 $W^i_{L\mu} \ \ W^i_{R\mu} \ \ B_\mu \ \ G^a_\mu$ (with respective coupling constants g_L , g_R , g_{B-L} , g_s)

• Assume $L \leftrightarrow R$ symmetry exact at TeV scale.

so $g_L = g_R$

Higgs:

complex bidoublet: ϕ triplets: Δ_L , Δ_R

Breaking

F. Nesti

New Physics?

LR

Hint: Quantum Numbers

Model

Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Breaking from: bidoublet $\phi \sim (h_{light}, H_{heavy})$, triplets Δ_L , Δ_R , $\langle \Delta_R \rangle = \begin{pmatrix} v_R \end{pmatrix}$, $\langle \phi \rangle = \begin{pmatrix} v' \\ v \end{pmatrix}$, $\langle \Delta_L \rangle = \begin{pmatrix} v_L \end{pmatrix}$

spontaneously with $v_R \gg v > v' \gg v_L$. [Mohapatra Senjanovic '75]

Breaking in two steps:

- v_R breaks $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$ $W_R^{\pm} \rightarrow \text{heavy: } M_{W_R} = gv_R.$ $W_R^3, B \rightarrow, \text{ heavy } Z_R, \text{ massless } B_Y.$
- v & v' break $SU(2)_L \times U(1)_Y \to U(1)_{EM}$ The standard W_L^{\pm} becomes massive $M_{W_L} = gv$ W_L^3 , B_Y , become Z massive, and the photon A massless. (really a general mixing matrix)

For TeV LR-symmetry, $v^2/v_R^2 = M_{W_L}^2/M_{W_R}^2 \simeq 10^{-3}.$

F. Nesti

New Physics?

LR

Hint: Quantum Numbers

Model

Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Left + Right models: spectrum

Bosons: W_R , ν_R , Δ_L , Δ_R heavy. from $v_r \rightarrow \text{TeV}$

Quark masses from two yukawa matrices, $\bar{q}_L(Y\phi + \tilde{Y}\tilde{\phi})q_R$:

$$M_{u} = |\mathbf{v}| \mathbf{Y} + |\tilde{\mathbf{v}}| \mathrm{e}^{i\alpha} \tilde{\mathbf{Y}}$$
$$M_{d} = |\mathbf{v}'| \mathbf{Y} + |\mathbf{v}| \mathrm{e}^{i\alpha} \tilde{\mathbf{Y}}$$

Similarly, neutrino Dirac masses.

$$M_D = |\mathbf{v}| \, \mathbf{h} + |\tilde{\mathbf{v}}| \mathrm{e}^{i\alpha} \tilde{\mathbf{h}}$$
$$M_\ell = |\mathbf{v}'| \, \mathbf{h} + |\mathbf{v}| \mathrm{e}^{i\alpha} \tilde{\mathbf{h}}$$

Recall from the triplets, Majorana neutrino masses:

$$M_L = Y_\Delta \langle \Delta_L \rangle \quad \ll \quad M_R = Y_\Delta \langle \Delta_R \rangle$$

Note, proportional by LR symmetry: $M_L \propto M_R$.

New Physics?

Hint: Quantum Numbers **Model** Scale Collider

LR

F. Nesti

There is a new mixing

Diagonalize again quarks as usual with biunitary:

$$M_u = U_{Lu} m_u U_{Ru}, \qquad M_u = U_{Lu} m_u U_{Ru}$$

• The Left charged currect contains the usual V_{CKM} :

$$V_L = U_{Lu}^{\dagger} U_{Ld}$$
 .

There is also a 'right' charged current:

$$V_R = U_{Ru}^{\dagger} U_{Rd}$$
 .

• And same in the lepton sector: U_{PMNSL} and U_{PMNSR} .

Low scale W_R Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

M_R scale

F. Nesti

New Physics?

Again focus on the scen

LR

Hint: Quantum Numbers Model

Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Again, focus on the scenario

• Low $M_{W_R} \gtrsim \text{TeV}$ possible and testable:

leading to striking signals

• Collider signals of W_R and ν_R .

And, lepton number violation enters in rare processes: i.e. new contributions to $0\nu\beta\beta$

... disentangled from light neutrino masses.

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R Δ_L,R Direct $\ell\ell jj$ Summary

Limits

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Direct limits

Limits

Dijets @ D0: $M_{W_R} \ge 885 \text{ GeV}$ [PRL '96, '04, '08, 1101.0806] $W' \rightarrow e\nu$ @ CMS: $M_{W_R} \ge 1.35 \text{ TeV}$ [CMS, 1012.5945](see later)

Limits from quark Flavour? Insurmountable? [see Tarantino's lectures]
 Meson oscillations.

CP violation.

 Limits from leptonic flavour changing. (there will be no time!)

Let's see the case of $\Delta F = 2$.

$\Delta F = 2$ processes

F. Nesti

Neutrino at

Collider - II

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs \mathcal{C}$ $0\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary $W_R \rightarrow$ new boxes for $\Delta F = 2$ — largest is W_L - W_R , e.g.:

Recall the GIM mechanism.

Here, the presence of W_R changes the game:

• $V_R^{\dagger} V_L$ is not identity.

• W_R current requires chirality flip.

... GIM is modified.

$\Delta F = 2$ Hamiltonians

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R-\nu_R$ Δ_L,R Direct $\ell\ell jj$

Summary

Effective **Hamiltonians** from the box diagrams:

$$\mathcal{H}_{LL}^{\Delta F=2} = \frac{G_F^2 M_{W_L}^2}{4\pi^2} \sum_{d,d'=d,s,b} \bar{d}' \gamma_{\mu} L d \bar{d}' \gamma_{\mu} L d \sum_{i,j=c,t} \lambda_i^{LL} \lambda_j^{LL} S_{LL}(x_i, x_j) \eta_{LL,ij}$$
$$\mathcal{H}_{LR}^{\Delta F=2} = \frac{G_F^2 M_{W_L}^2}{4\pi^2} \beta \sum_{d,d'=d,s,b} \bar{d}' L d \bar{d}' R d \sum_{i,j=u,c,t} \lambda_i^{LR} \lambda_j^{RL} 8S_{LR}(x_i, x_j, \beta) \eta_{LR,ij}$$
$$\mathcal{H}_{RR}^{\Delta F=2} = \frac{G_F^2 M_{W_L}^2}{4\pi^2} \beta \sum_{d,d'=d,s,b} \bar{d}' \gamma_{\mu} R d \bar{d}' \gamma_{\mu} R d \sum_{i,j=c,t} \lambda_i^{RR} \lambda_j^{RR} S_{RR}(x_i, x_j, \beta) \eta_{RR,ij}$$

where

$$\lambda_i^{AB} = V_{id'}^{A*} V_{id}^B, \quad x_i = m_i^2 / M_{W_L}^2, \quad \beta = M_{W_L}^2 / M_{W_R}^2$$

and chiral enhancement in **Matrix element** for meson $M^0 - \overline{M}^0$:

$$\left\langle M^{0} \left| \overline{d}' \gamma_{\mu} L d \, \overline{d}' \gamma_{\mu} L d \right| \overline{M}^{0} \right\rangle = \frac{2}{3} f_{M}^{2} m_{M} \mathcal{B}_{M}^{LL}$$

$$\left\langle M^{0} \left| \overline{d} L d' \, \overline{d} R d' \right| \overline{M}^{0} \right\rangle = \frac{1}{2} f_{M}^{2} m_{M} \mathcal{B}_{M}^{LR} \left[\left(\frac{m_{M}}{m_{d'} + m_{d}} \right)^{2} + \frac{1}{6} \right]$$

•

$\Delta F = 2$ FC Higgs

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R^{-\nu}R$ $\Delta_{L,R}$ Direct $\ell\ell jj$

Summary

Effective **Hamiltonians** from the tree level Higgs:

$$\mathcal{H}_{H}^{\Delta F=2} = -\frac{4G_{F}}{\sqrt{2}M_{H}^{2}} \sum_{d,d'=d,s,b} \bar{d}' L d \bar{d}' R d \sum_{i,j=u,c,t} \lambda_{i}^{LR} \lambda_{j}^{RL} m_{i} m_{j},$$

where again

$$\lambda_i^{LR} = V_{id'}^{L*} V_{id}^R \,.$$

ΚĀ

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

(With hadronic uncertainty 25–50%)

(and LR long-distance part 🛝)

So it is V_R^{CKM} that matters...

Good mixing matrices

F. Nesti

Neutrino at

Collider - II

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Good V_R would have thus one of the following forms:

$$V_R = \left(egin{array}{ccc} e^{i\psi} & 0 & 0 \ 0 & ce^{i\sigma} & -se^{i\gamma} \ 0 & se^{i heta} & ce^{i\epsilon} \end{array}
ight), \qquad \left(egin{array}{ccc} 0 & e^{i\psi} & 0 \ ce^{i\sigma} & 0 & -se^{i\gamma} \ se^{i heta} & 0 & ce^{i\epsilon} \end{array}
ight)$$

[Langacker Sarkar '98]

Enough to relax limits from both Δm_K and B_s , B_d .

Then also CP violation bounds can be satisfied, by exploiting phases.

 $\theta_{12R} = 0$ or $\pi/2$

Can we reach this form?

Generically yes, Y, Ỹ, α unconstrained, → V_R free → no limit.
 In minimal models, Y, Ỹ, α are constrained...

F. Nesti

Hint: Quantum Numbers Model

New Physics?

LR

Scale Collider

L-R models: the two symmetries

Restrict the yukawa: good for predictivity, bad for constraints. $\boxed{\mathcal{P}}$ Generalized Parity:

$$f_L \leftrightarrow f_R , \ \phi \leftrightarrow \phi^{\dagger}$$

Need Y, \tilde{Y} hermitian.

But masses are *not*, due to the 'spontaneous' phase $e^{i\alpha}$ what mixings?

C Generalized Charge conj.

$$f_L \leftrightarrow (f_R)^c, \ \phi \leftrightarrow \phi^T$$

Need Y, \tilde{Y} symmetric. Therefore, $\Rightarrow V_R = K_1 V_L^* K_2$, with K_1 , K_2 diagonal phases. (So for C equal mixings, \rightarrow we already know $M_{W_R} \ge 2.5 \text{ TeV}$) (Note this is gaugeable symmetry – e.g. embedded in GUT SO(10)

Low scale W_R Limits $K\bar{K}$ $\mathcal{P}vs \mathcal{C}$ $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits

 $K\bar{K}$ $\mathcal{P}vs \mathcal{C}$ $0\nu\beta\beta$ Collider $W_{R}-\nu_{R}$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

• May disentangle V_R and V_L if masses are not hermitian? $M_u = v Y + v' \tilde{Y} e^{i\alpha}$ $M_d = v' Y + v \tilde{Y} e^{i\alpha}$

case of \mathcal{P} : RH mixings and W_R

Key parameters are α and x = v'/v. (0 < x < 1)

• For small $x \leq m_b/m_t$: one obtains analytically $V_R \simeq V_L$ [Zhang+ '07]

• For $x > m_b/m_t$ there may be cancellations and large angles...

... However α is limited by the need to adjust $m_b \ll m_t$.

So no, in general matrices \sim hermitian and mixings similar...

case of \mathcal{P} : limits

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Numerical fit to check how robust.

Mixings are quite aligned, to 10-20%.

Here $\theta_{12R}/\theta_{12L}$.

Other angles similarly related.

So, bound from ΔM_K is still at $M_{W_R} \gtrsim 2.5 \text{ TeV}$, at most 20% less. (And still 25% from matrix element, long distance parts...)

[Maiezza+ '10]

\mathcal{P} : summary of bounds on M_{W_R}

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary $\mathsf{Mixings} \sim \mathsf{similar} \to \mathsf{model}$ is predictive, depends only on the scale:

CP conserving:

• Δm_K : ~ 2.5 TeV

• $\Delta m_{B_{d,s}}$: 1.5 ~ 2 TeV

 \mathcal{P} is a theory of two phases only ($e^{i\alpha}$ and one phase in the \tilde{Y}) so also phases are predicted... Main bound then comes from ϵ , ϵ' ..

CP violating:

■ *ϵ*, *ϵ*′: 3.2 ~ 4.2 TeV

• CP in $B_{d,s}$: ? (no solution for the SM tensions [[see Tarantino])

4 TeV a bit high $\rightarrow \mathcal{P}$ Marginally detectable at LHC.

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Case of C: Charge Conjugation

Mass matrices symmetric: same angles, only extra phases (5)

$$V_R = K_u V_L^* K_d$$

$$\{K_u = \text{diag}\{e^{i\theta_u}, e^{i\theta_c}, e^{i\theta_t}\}, K_d = \text{diag}\{e^{i\theta_d}, e^{i\theta_s}, e^{i\theta_b}\}\}$$

• No constraint from Δm_{B_d} , Δm_{B_d} , but

CP violations?

C, cont'd: ϵ_K

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Possible new physics in ϵ is at most \sim 15–30%:

$$\frac{\epsilon_{LR}}{\epsilon_{SM}} \simeq \mathrm{Im} \left[\mathrm{e}^{i(\theta_d - \theta_s)} A_{cc} \right] < 0.3$$

where $\beta = -\arg(V_{Ltd})$ and the *c*-*c* term is:

$$A_{cc} \simeq \left[150 + 8.2 \ln \left(\frac{M_{W_R}}{2.5 \,\mathrm{TeV}}\right)\right] \left(\frac{2.5 \,\mathrm{TeV}}{M_{W_R}}\right)^2 + 84 \left(\frac{15 \,\mathrm{TeV}}{M_H}\right)^2$$

Quite large contribution from LR! However,

For Zero phases $\theta_{d,s}$, no CP violation

In fact this is general, with C.

So, *no bounds*, we only conclude that we need:

$$\theta_d - \theta_s \simeq 0$$
.

Finally, situation with CP violation in $B_{d,s}$ is still curious...

C, cont'd, $B_{d,s}$

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R Δ_L,R Direct $\ell\ell jj$ Summary

Correlated bound: In the interesting zone for LHC

$$h_q = rac{\langle B_q | \mathcal{H}_{LR} | \overline{B}_q \rangle}{\langle B_q^0 | \mathcal{H}_{SM} | \overline{B}_q^0
angle}, \qquad (q = d, s)$$

[Maiezza+'10]

Need the last nonzero phase θ_b : $\theta_b - \theta_d \simeq \theta_b - \theta_s$ (recall $\theta_d \simeq \theta_s$)

 $\rightarrow h_{d,s}$ point toward same region.

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Summary of theoretical limits

• Important limit comes only from $K^0\overline{K}^0$ mass difference,

- In general models, $V_{CKMR} \neq V_{CKML}$ then no limit on M_{W_R} .
- In minimal models, $V_{CKMR} \simeq V_{CKML}$, we need $M_{W_R} > 2.5 \text{ TeV}$
- In general ϵ , ϵ' harmless, due to free phases.
- Lepton Flavour violation ($\mu \rightarrow eee, \ \mu \rightarrow e\gamma$), require heavy Δ_R or light M_{ν_R} .

In conclusion, restoring C gives a predictive theory at TeV scale, which is nontrivially passing all tests of flavour.

[see Tarantino]

Finally, back to 0
uetaeta

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs C $\mathbf{0}\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Back to $0\nu\beta\beta$

Back to $0\nu\beta\beta$

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs C$ $\mathbf{0}\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

New contributions!

- LL the standard.
- LR hardly important. (need Dirac cancelations)

RR important for:

 $\left(\frac{M_{W_R}}{\text{TeV}}\right)^4 \left(\frac{m_{\nu_R}}{\text{TeV}}\right) < 2$. (Yukawa free) E.g. $M_{W_R} \simeq 3 \text{ TeV}, \ m_{\nu_R} \simeq 25 \text{ GeV}!$

Remember the estimate of New Physics scale? This is a realization.

0 uetaeta cont'd

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Limits $K\bar{K}$ $\mathcal{P}vs \mathcal{C}$ $\mathbf{0}\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Sample case of type-II seesaw: $U_{PMNSL} = U_{PMNSR}$, and proportional masses. Light and heavy ν competing:

[Tello+ '11]

Summing the two: never vanishing.

$0\nu\beta\beta$ cont'd

F. Nesti

Neutrino at

Collider - II

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Limits $K\bar{K}$ \mathcal{P} vs C $\mathbf{0}\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Sample case of type-II seesaw: $U_{PMNSL} = U_{PMNSR}$, and proportional masses. Light and heavy ν competing:

[Tello+ '11]

Summing the two: never vanishing.

Check now the possible $0\nu\beta\beta$ evidence versus cosmology :

• LR an example of new physics in $0\nu\beta\beta$ avoiding the clash.

$0\nu\beta\beta$: type-II sum

F. Nesti

New Physics?

Never vanishing: 0νββ probe can exclude this scenario.
 Or confirm it, with a hint for M_{ν_R} ~ 20 GeV.

Let's finally turn this prediction to collider.

Hint: Quantum Numbers Model

LR

Scale Collider

Low scale W_R Limits

 $K\bar{K}$ $\mathcal{P}vs C$ $\mathbf{0}\nu\beta\beta$ Collider $W_{R}-\nu_{R}$ $\Delta_{L,R}$ Direct

lljj

Summary

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs \mathcal{C}$ $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Collider

 $W_R - \nu_R$

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs \mathcal{C}$ $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Lepton number violation @ collider: W_R , ν_R on-shell.

[Keung Senjanović '83]

Half the decays in same-sign dileptons (Majorana!) Reconstruct W_R and ν_R invariant masses:

- Two leptons and two jets $\rightarrow M_{W_R}$.
- Second lepton and two jets $\rightarrow M_{\nu_R}$.
- Yukawa-free
- Probing RH neutrino flavour pattern Is it feasible experimentally?

(e-e, e-
$$\mu$$
, μ - μ , τ ?)

F. Nesti

W_R - ν_R cont'd

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Pythia already implements a minimal L-R model - can play with it. Detector - e.g. PGS (Pretty Good Simulator) is pretty good.

Gift of LNV: no background above 1.5TeV. Good both for M_{W_R} , M_{ν_R} .

- Note, width of W_R , is roughly 1/100 of its mass \rightarrow few GeV. The energy resolution will probably be not enough to measure it!
- M_{ν_R} has to be below M_{W_R} , kinematically.

W_R - ν_R cont'd

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Direct ℓℓjj

Summary

dileptons

F. Nesti

Neutrino at

Collider - II

New Physics?

LR Hint: Quantum Numbers Model Scale

```
Low scale W_R
```

Collider

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary • And: early signal through $\ell^{\pm}\ell^{\pm}$ large energy (wrt to $t\overline{t}$ ones)...

 Neutrino masses and flavour: Yukawa-free, but probing RH neutrino matrix. Need channels, e-e, e-μ, μ-μ, τ(?)

(and need updated MC)

Displaced Vertex?

 $au_{
u_R} \gtrsim 1\,{
m cm}\,\,{
m for}\,\,m_{
u_R} \lesssim 10\,{
m GeV}~~(M_{W_R}=2.5\,{
m TeV})$

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

How right is W_R ?

LHC is a *pp* symmetric machine, so it is not possible to use the simple A_{FB} asymmetry of W_R , to look for chirality of its interactions.

• One has to use the first decay $W_R \rightarrow eN$.

- Determine the W_R direction (from the full event!)
 Identify the first lepton. (the more energetic)
- Its asymmetry wrt the W_R direction gives the 'Right' chirality.
- It is necessary to efficiently distinguish the two leptons. (More difficult for $M_N \neq 0.6 \div 0.8 M_{W_R}$ [Ferrari '00])

• Also the subsequent decay $N \rightarrow \ell j j$ may be used.

Polarization seems to be visible in a wide range of masses M_{ν_R} , M_{W_R} .

F. Nesti

New Physics?

Numbers

Model

Scale Collider

Limits

 \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$

Collider $W_{R}^{-\nu}R$

 $\Delta_{L,R}$ Direct

lljj

Summary

ΚĀ

LR

$\Delta_{L,R}$

Reach < 1 TeV (100 fb⁻¹)

Direct Limits

Current probes:

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R - \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

• Limit on $Z'
ightarrow \mu^+ \mu^-$

 $M_{Z'} > 1050 \,{
m GeV}$ [CMS, 1103.0981] (superseding $M_{Z'} > 959 \,{
m GeV}$ (CDF) [Erler+, 1010.3097])

Recent data...

CMS dileptons dijets

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Using tight lepton isolation. and cuts on:

- $M_{\ell\ell}$: Invariant mass of dileptons
- S_t : sum of total p_t of dileptons, dijets

• No $ee(\mu\mu)$ events above:

 $M_{\ell\ell} > 200(320)\,{
m GeV}$ or $S_t > 620(560)\,{
m GeV}$

... using the same cuts and background, exclude W_R - ν_R ...

CMS dileptons dijets, cont'd

F. Nesti

Neutrino at

Collider - II

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Result of exclusion [σ] for $ee+jj+and \mu\mu+jj+:$

- Electron and muon channels give similar limits
- A new limit of $M_{W_R} \gtrsim 1.4 \text{ TeV} (95\% \text{ CL})$
- Holding in a good part of the parameter space
- $L = 100 \text{pb}^{-1}$: $M_{W_R} > 1.6 \text{ TeV}$, $L = 1 \text{fb}^{-1}$: $M_{W_R} > 2.2 \text{ TeV}$.

High or very low M_{ν_R} unaccessible to this probe...

On a global plot

[Nemevšek+ '11]

F. Nesti

Neutrino at

Collider - II

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$

Summary

The interesting $0\nu\beta\beta$ region waiting for us... Looking forward for jets with EM activity... ...and displaced vertices.

Summary

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Neutrino physics leading us to TeV scale parity restoration.

- Needs Majorana
- Beyond a simple RH neutrino
- A symmetric extension BSM,
- LR Symmetry at low scale.
- Leading to a connection between neutrino masses, $0\nu\beta\beta$, collider.
- TeV scale tailor-fit for $0\nu\beta\beta$.
- And for W_R - ν_R @ LHC.
- Limits: Expect above $M_{W_R} \gtrsim 2.5 \ TeV$ (only from $K^0 \overline{K}^0$)
- LHC rapidly competitive: bound now $M_{W_R} > 1350 \,\text{GeV}$
- Expect 2.2TeV limit with 1/fb, this year summer.

(If 0
uetaeta claim true)

Summary

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Neutrino physics leading us to TeV scale parity restoration.

- Needs Majorana
- Beyond a simple RH neutrino
- A symmetric extension BSM,
- LR Symmetry at low scale.
- Leading to a connection between neutrino masses, $0\nu\beta\beta$, collider.
- TeV scale tailor-fit for $0\nu\beta\beta$.
- And for W_R - ν_R @ LHC.
- Limits: Expect above $M_{W_R} \gtrsim 2.5 \ TeV$ (only from $K^0 \overline{K}^0$)
- LHC rapidly competitive: bound now $M_{W_R} > 1350 \,\text{GeV}$
- Expect 2.2TeV limit with 1/fb, this year summer.

(If 0
uetaeta claim true)

Summary

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Neutrino physics leading us to TeV scale parity restoration.

- Needs Majorana
- Beyond a simple RH neutrino
- A symmetric extension BSM,
- LR Symmetry at low scale.
- Leading to a connection between neutrino masses, $0\nu\beta\beta$, collider.
- TeV scale tailor-fit for $0\nu\beta\beta$.
- And for W_R - ν_R @ LHC.
- Limits: Expect above $M_{W_R} \gtrsim 2.5 \ TeV$ (only from $K^0 \overline{K}^0$)
- LHC rapidly competitive: bound now $M_{W_R} > 1350 \,\text{GeV}$
- Expect 2.2TeV limit with 1/fb, this year summer.

(If 0
uetaeta claim true)

Summary

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits $K\bar{K}$ \mathcal{P} vs C $0\nu\beta\beta$ Collider $W_R-\nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Neutrino physics leading us to TeV scale parity restoration.

- Needs Majorana
- Beyond a simple RH neutrino
- A symmetric extension BSM,
- LR Symmetry at low scale.
- Leading to a connection between neutrino masses, $0\nu\beta\beta$, collider.
- TeV scale tailor-fit for $0\nu\beta\beta$.
- And for W_R - ν_R @ LHC.
- Limits: Expect above $M_{W_R} \gtrsim 2.5 \ TeV$ (only from $K^0 \overline{K}^0$)
- LHC rapidly competitive: bound now $M_{W_R} > 1350 \,\text{GeV}$
- Expect 2.2TeV limit with 1/fb, this year summer.

(If 0
uetaeta claim true)

\mathcal{C} : *B* CP violation

F. Nesti

The last free phase is constrained:

New Physics?

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Direct ℓℓjj

Summary

Lepton Flavour Violation constraints

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary Leptons less predictive... (neutrinos have Dirac and Majorana mass) ... but the collider flavour structure enters, via $M_{\nu_R} \propto Y_{\Delta}$, e.g.:

•
$$\mu \to 3e$$
: $\left| \frac{(M_{\nu_R})_{\mu e} (M_{\nu_R})_{ee}^*}{M_{\Delta}^2} \right|^2 \lesssim \left(\frac{1}{2}\right)^4 \div \left(\frac{1}{10}\right)^4$

•
$$\mu \to e \gamma$$
: $\left| \frac{(M_{\nu_R}^2)_{\mu e}}{M_\Delta^2} \right|^2 \lesssim 1$

• $\mu \rightarrow e$ in nuclei ... [w/ V. Tello, M. Nemevšek, G. Senjanović, F. Vissani, 1011.3522]

So, $M_{\nu_R} < M_{\Delta}/2 \div 10$... light M_{ν_R} is favoured. Again in type-II seesaw, we already have information from $M_{\nu_R} \propto M_{\nu}$. LHC verifying connections between light and heavy neutrino mass. (Need to observe different neutrino peaks – statistics, resolution...luck.)

Neutrino at Other data: CMS dileptons ? [CMS 1103.0981, Landsberg, 24/1/'11] Collider - II F. Nesti New Physics? Events / 5 GeV 104 Events / 5 GeV **10**⁴ DATA DATA $\gamma / \mathbf{Z} \rightarrow \mu^* \mu^*$ LR γ/Z → e⁺e⁻ 10³ tī + tī-like 10^{3} tī Hint: Quantum Numbers jets Jets from data 10²) Model Z^*_{SSM} (750 GeV) $\rightarrow \mu^* \mu$ 10² Z'_{SSM} (750 GeV) → e⁺e⁻--Scale 10 **CMS** Preliminary **CMS** Preliminary Collider 10 Low scale W_R 1 Limits 1 ΚĀ 10⁻¹ \mathcal{P} vs \mathcal{C} 10⁻¹ $0\nu\beta\beta$ 10⁻² Collider 10⁻² $W_R - \nu_R$ 10⁻³ 800 1000 m(μ⁺μ⁻) (GeV) 200 400 600 200 600 800 1000 400 $\Delta_{L,R}$ m(ee) (GeV) Direct Events / 5 GeV lljj - DATA $\int L = 35 - 40 \text{ pb}^{-1}$ $\gamma / \mathbf{Z} \rightarrow \mu^* \mu^*$ Summary tī + tī-like jets Already sensitive.

10⁻¹

10⁻²

50

100 150 200 250

Implement same cuts...

350 400 450 500 m(μ⁺e⁻/μ⁻e⁺) (GeV)

300

LFV constraints

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R $\Delta_{L,R}$ Direct $\ell\ell jj$

Summary

Including $\mu \to 3e, \ \tau \to 3e, \ \mu \to e$ in nuclei.

This tells us just $m_{\Delta} > m_N$.

L-R Lagrangian

 \mathcal{L}

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits

ΚĀ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider $W_R^{-\nu}R$ $\Delta_{L,R}$ Direct lljj

Summary

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{fermion} + \mathcal{L}_{Yuk} + \mathcal{L}_{Maj}$$

$$\mathcal{L}_{Higgs} = \operatorname{Tr}[(D_{\mu}\Delta_{L})^{\dagger}(D^{\mu}\Delta_{L})] + \operatorname{Tr}[(D_{\mu}\Delta_{R})^{\dagger}(D^{\mu}\Delta_{R})]$$

$$+ \operatorname{Tr}[(D_{\mu}\phi)^{\dagger}(D^{\mu}\phi)] + V(\phi, \Delta_{L}, \Delta_{R})$$

$$\mathcal{L}_{Fermion} = \overline{q}_{Li}i \not Dq_{Li} + \overline{\ell}_{Li}i \not D\ell_{Li} + (L \leftrightarrow R)$$

$$\mathcal{L}_{Yukawa q} = \overline{q}_{Li}(Y_{ij}\phi + \tilde{Y}_{ij}\tilde{\phi})q_{Rj} + h.c.$$

$$\mathcal{L}_{Yukawa \ell} = \overline{\ell}_{Li}(h_{ij}\phi + \tilde{h}_{ij}\tilde{\phi})\ell_{Rj} + h.c.$$

$$\mathcal{L}_{Majorana} = Y^{ij}[\overline{\ell}_{Li}^{t}C \tau_{2}\Delta_{L}\ell_{Lj} + (L \leftrightarrow R)] + h.c.$$

$$\mathcal{L}_{M_{W}} = \left(W_{L\mu}^{-}W_{R\mu}^{-}\right) \begin{pmatrix} \frac{1}{2}g^{2}(v^{2} + v'^{2} + 2v_{L}^{2}) - g^{2}vv'e^{-i\alpha} \\ -g^{2}vv'e^{i\alpha} & g^{2}v_{R}^{2} \end{pmatrix} \begin{pmatrix} W_{L}^{+\mu} \\ W_{R}^{+\mu} \end{pmatrix}$$

$$W_{T} = W_{T} = W_{T}$$

$$\begin{pmatrix} w_{3L} & w_{3R} & B \\ (g^2/2(\kappa^2 + \kappa'^2 + 4v_L^2) & -g^2/2(\kappa^2 + \kappa'^2) & -2gg'v_R^2 \\ -g^2/2(\kappa^2 + \kappa'^2) & g^2/2(\kappa^2 + \kappa'^2 + 4v_R^2) & -2gg'v_R^2 \\ -2gg'v_L^2 & -2gg'^2v_R^2 & 2g'^2(v_L^2 + v_R^2) \end{pmatrix}$$

$$D_{\mu}\phi = \partial_{\mu}\phi + ig_{L}W_{L\mu}\phi - ig_{R}\phi W_{R\mu}$$

$$D_{\mu}\psi = \partial_{\mu}\phi + ig_{L}W_{L,R\mu}\psi_{L,R} + ig'(B-L)/2B_{\mu}\psi_{L,R}$$

$$D_{\mu}\Delta_{(L,R)} = \partial_{\mu}\Delta_{(L,R)} + ig_{(L,R)}\left[W_{(L,R)\mu}, \ \Delta_{(L,R)}\right] + ig'B_{\mu}\Delta_{(L,R)}$$

Left-Right: scalar potential

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

$$\begin{split} \mathsf{V}(\phi, \Delta_L, \Delta_R) &= \\ -\mu_1^2 \mathrm{Tr}(\phi^{\dagger} \phi) - \mu_2^2 \left[\mathrm{Tr}(\tilde{\phi} \phi^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger} \phi) \right] - \mu_3^2 \left[\mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right] \\ +\lambda_1 \left[\mathrm{Tr}(\phi^{\dagger} \phi) \right]^2 + \lambda_2 \left\{ \left[\mathrm{Tr}(\tilde{\phi} \phi^{\dagger}) \right]^2 + \left[\mathrm{Tr}(\tilde{\phi}^{\dagger} \phi) \right]^2 \right\} \\ +\lambda_3 \mathrm{Tr}(\tilde{\phi} \phi^{\dagger}) \mathrm{Tr}(\tilde{\phi}^{\dagger} \phi) + \lambda_4 \mathrm{Tr}(\phi^{\dagger} \phi) \left[\mathrm{Tr}(\tilde{\phi} \phi^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger} \phi) \right] \\ +\rho_1 \left\{ \left[\mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) \right]^2 + \left[\mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right]^2 \right\} \\ +\rho_2 \left[\mathrm{Tr}(\Delta_L \Delta_L) \mathrm{Tr}(\Delta_L^{\dagger} \Delta_L^{\dagger}) + \mathrm{Tr}(\Delta_R \Delta_R) \mathrm{Tr}(\Delta_R^{\dagger} \Delta_R^{\dagger}) \right] \\ +\rho_3 \mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) + \rho_4 \left[\mathrm{Tr}(\Delta_L \Delta_L) \mathrm{Tr}(\Delta_R^{\dagger} \Delta_R^{\dagger}) + \mathrm{Tr}(\Delta_L^{\dagger} \Delta_L^{\dagger}) \mathrm{Tr}(\Delta_R \Delta_R) \right] \\ +\alpha_1 \mathrm{Tr}(\phi^{\dagger} \phi) \left[\mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right] \\ + \left\{ \alpha_2 e^{i\delta_2} \left[\mathrm{Tr}(\tilde{\phi} \phi^{\dagger}) \mathrm{Tr}(\Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger} \phi) \mathrm{Tr}(\Delta_R \Delta_R^{\dagger}) \right] + h.c. \right\} \\ +\alpha_3 \left[\mathrm{Tr}(\phi \phi^{\dagger} \Delta_L \Delta_L^{\dagger}) + \mathrm{Tr}(\phi^{\dagger} \phi \Delta_R \Delta_R^{\dagger}) \right] + \beta_1 \left[\mathrm{Tr}(\phi \Delta_R \phi^{\dagger} \Delta_L^{\dagger}) + \mathrm{Tr}(\phi^{\dagger} \Delta_L \phi \Delta_R^{\dagger}) \right] \\ +\beta_2 \left[\mathrm{Tr}(\tilde{\phi} \Delta_R \phi^{\dagger} \Delta_L^{\dagger}) + \mathrm{Tr}(\tilde{\phi}^{\dagger} \Delta_L \phi \Delta_R^{\dagger}) \right] + \beta_3 \left[\mathrm{Tr}(\phi \Delta_R \tilde{\phi}^{\dagger} \Delta_L^{\dagger}) + \mathrm{Tr}(\phi^{\dagger} \Delta_L \tilde{\phi} \Delta_R^{\dagger}) \right] \end{split}$$

Higgs spectrum

F. Nesti

5.1		DI			2
1/1	AVV	\mathbf{P}	٦ \.	121	cc(
1.7	CVV		ту	51	

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ Collider W_R - ν_R Δ_L,R Direct $\ell\ell jj$ Summary

Higgs state	m^2
$h^0 = \sqrt{2} \operatorname{Re} \left(\phi_1^{0*} + x e^{-i\alpha} \phi_2^0 \right)$	$\left(4\lambda_1 - \frac{\alpha_1^2}{\rho_1}\right)v^2 + \alpha_3 v_R^2 x^2$
$H_1^0 = \sqrt{2} \operatorname{Re} \left(-x e^{i\alpha} \phi_1^{0*} + \phi_2^0 \right)$	$\alpha_3 v_R^2$
$A_1^0 = \sqrt{2} \text{ Im } (-xe^{i\alpha}\phi_1^{0*} + \phi_2^0)$	$\alpha_3 v_R^2$
$H_2^0 = \sqrt{2} \operatorname{Re} \delta_R^0$	$4 ho_1 v_R^2$
$H_{2}^{+} = \phi_{2}^{+} + xe^{i\alpha}\phi_{1}^{+} + \frac{1}{\sqrt{2}}\epsilon\delta_{R}^{+}$	$\alpha_3 \left(v_R^2 + \frac{1}{2} v^2 \right)$
δ_R^{++}	$4\rho_2 v_R^2 + \alpha_3 v^2$
$H_3^0 = \sqrt{2} \operatorname{Re} \delta_L^0$	$(ho_3-2 ho_1)v_R^2$
$A_2^0 = \sqrt{2} \operatorname{Im} \delta_L^0$	$(ho_3-2 ho_1)v_R^2$
$H_1^+ = \delta_L^+$	$(ho_3 - 2 ho_1)v_R^2 + \frac{1}{2}lpha_3v^2$
δ_L^{++}	$(ho_3 - 2 ho_1)v_R^2 + lpha_3v^2$

Leading order in $\epsilon = v/v_R$ and x = v'/v, and assuming $v_L = 0$. The SM Higgs is identified with h^0 .

F. Nesti

W_L - W_R mixing

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R

Limits $K\bar{K}$ $\mathcal{P}vs \mathcal{C}$ $0\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary In the minimal model, the tree level W_L - W_R mixing angle is

$$\tan 2\zeta = \frac{2vv'}{v_r^2 + v^2} \simeq \frac{v'}{v} \frac{M_{W_L}^2}{M_{W_R}^2}$$

This is bound by 'Left' weak decays, $\zeta < 10^{-2}$ (310⁻³).

Thus, this translates into a limit on the W_R mass:

$$M_{W_R} > 1.5 \, {
m TeV} \sqrt{rac{2x}{1+x^2}}$$
 ,

... However, since $M_{W_R} > 2$. TeV (see later), this bound is quite harmless.

F. Nesti

New Physics?

LR

Hint: Quantum Numbers Model Scale Collider

Low scale W_R Limits

Limits $K\bar{K}$ $\mathcal{P}vs C$ $0\nu\beta\beta$ Collider $W_R \cdot \nu_R$ $\Delta_{L,R}$ Direct $\ell\ell jj$ Summary

Note: a *different* way to restore parity

Instead of symmetrizing the gauge group, symmetrize the fermions.

- add mirror fermions: three families of opposite chirality q'_R , ℓ'_R , u'_L , d'_L , e'_L . (No ν'_L here!)
- Possible mass terms like $\bar{q}_L q'_R$ must be forbidden.
- And, being (anti)chiral families, they can (only) get mass from SU(2) breaking: Yukawa. Then, not arbitrarily heavy (perturbativity).
- But mirror families must be heavy from direct searches: $m_{q'} > 350 \,\text{GeV}$ $m_{e'} \gtrsim 100 \,\text{GeV}$ $m_{\nu'} \gtrsim 45 \,\text{GeV}$ So, low perturbativity cutoff.

Hence: no connection with neutrino masses here.

But predictive, and on the way to be excluded by LHC? LHC search for 4th and further generations.

Neutrino at Neutrinoless decays: $K \rightarrow \pi e^+ e^+$ Collider - II F. Nesti u New Physics? LR W Hint: Quantum d Numbers Model w⁺ Scale ν Collider v. Low scale W_R Limits W⁺ ΚĀ \mathcal{P} vs \mathcal{C} $0\nu\beta\beta$ S U ū Collider

Extremely rare, e.g. estimate

Direct *llji*

Summary

 $W_R - \nu_R$

 $\Delta_{L,R}$

 $B(K^+ \to \pi^- \,\ell^+ \ell'^+) \sim 10^{-13} \left[\left(\frac{m_{\nu \, ee}}{100 \, \text{MeV}} \right)^2 + U_{eR}^2 \left(\frac{100 \, \text{MeV}}{m_R} \right)^2 \right] r_{\ell\ell'}$