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Figure 4: Longitude/Pressure sections of DJF Z* at 60N (top), 45N(mid), and 25N(lower) .
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1 Stationary Wave Description: Zonal Waves and Poleward Heat

Transport

We use the geostrophic approximation for the time mean eddy com-
ponents of the horizontal wind (u, v) and use the hydrostatic approx-
imation for the time mean eddies, all in log-pressure coordinates:

f

g
u∗ = −1

a

∂z∗

∂φ
(1)

f

g
v∗ = +

1

a cos φ

∂z∗

∂λ
(2)

∂z∗

∂Z
=

RT ∗

gH
(3)

where z is the geopotential height, and as before

Z = H log

(
p0

p

)

with H = 10 km, and p0 = 1000hPa.
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Since for each latitude and level, the wind and height fields are
periodic in longitude e.g. z(λ = 2π) = z(λ = 0) we can expand z
in harmonic coefficients:

z∗ =

m=M∑
m>0

(Am cos(mλ) + Bm sin(mλ))

=

m=M∑
m>0

Am cos (mλ − Ψm) (4)

The harmonic coefficients A and B depend on the integer zonal
wavenumber m, as do the amplitude A and phase Ψ. The truncation
limit m = M can be taken to be quite modest M ∼ 10 for all time
mean upper air fields (excepting ω), since they are smooth.

Using equation 4 in equation 2 and equation 3, we obtain expansions
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for the eddy wind components and temperature:

f

g
u∗ = −1

a

∑
m>0

(
∂Am

∂φ
cos(mλ − Ψm) + Am sin(mλ − Ψm)

∂Ψm

∂φ

)

f

g
v∗ = +

1

a cos φ

∑
m>0

(−mAm sin(mλ − Ψm)) (5)

R

gH
T ∗ =

∑
m>0

(
∂Am

∂Z
cos(mλ − Ψm) + Am sin(mλ − Ψm)

∂Ψm

∂Z

)
(6)

in which the derivatives of the amplitude and phase of each harmonic
component enter.

From these equations it is not hard to obtain:
R

gH

f

g
[v∗T ∗] = − 1

a cos φ

1

2

∑
m>0

m(Am)2
∂Ψm

∂Z̃
(7)

where both sides are dimensionless. Note that poleward heat flux
is associated with a negative shift of the phase Ψ with height.
This is equivalent to a westward shift with height.
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Figure 23: Stationary Eddy heat flux [v∗T ∗] (shaded) and mean T (contour) for DJF (top) and
JJA (bottom).
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