Introduction to Re-Analysis: the ECMWF experience

Paul Poli, Franco Molteni

European Centre for Medium-Range Weather Forecasts, Reading, U.K.

Why reanalysis?

3- Advantages against "observations-only" multidecadal gridded datasets ... for climate studies

- 1) How reanalysis deals with "missing data"
 - · Only assimilate observations when and where we have them!
 - ... instead of reverting to a crude, 2nd-order, unphysical interpolation to "fill in the blanks"
- 2) Produced fields are space- and physically-consistent
 - As specified by the NWP model
- 3) Use the widest variety of observations
 - Not just temperatures, or winds, or humidities in isolation of each other...
 - ... but also pressures, satellite observations, ... multi-variate approach
- 4) All observations are evaluated/used in a consistent way
 - Accuracy and precision explicitly taken into account
 - Seamless quality control (QC) procedures, across all observation types
 - The background prediction provides a unique advantage for QC

Conclusion

 So, yes reanalysis combines lots of difficulties due to changes in observations input... but like with ANY OTHER observations-based dataset, the basic challenge is the same (change in observations' quality and quantity over time). The difference is, we try to do things in a consistent manner, by applying the same methodology of *data assimilation* for all observations

Summary of the goals: reanalysis products should be consistent ...

Reanalysis com Part 1: Observa	iponents tions
Use as many observations as possible	 Goal being to produce the best estimate of the atmospheric state, at any given time and place
Use "good" observations	 Use corrected/reprocessed datasets when available Focus efforts on long records
Keep track of what goes in/comes out	 Implement dedicated monitoring at key points of the assimilation (observation ingest, blacklisting, thinning, assimilation)
Keep that setup throughout the reanalysis	 Beware of large components of the observing system that suddenly disappear from the assimilation
ECMWF Reanalysis	9

Evolution of radiosonde coverage

Average number of soundings per day: 1609

1°1° average in 3 categories: > 1 per week -> 0.5 per day: 0.5 per day -> 1.5 per day: > 1.5 per day

Average number of soundings per day: 1626

1°1° average in 3 categories: > 1 per week -> 0.5 per day: 0.5 per day -> 1.5 per day: > 1.5 per day

Average number of soundings per day: 1189

Example of improved data coverage, through reprocessing of Meteosat data into Atmospheric Motion Vectors

Early 1980s Expanded Low-resolution Winds

Data assimilation process – applied to reanalysis

A short history of atmospheric reanalysis

- 1979: Observation datasets collected for the First GARP Global Atmospheric Research Program Experiment (FGGE): used a posteriori for several years, to initialize NWP models (= the first reanalyses!), to compare performances and progress
- **1983**: **Reanalysis concept first proposed** by Daley for monitoring the impact of forecasting system changes on the accuracy of forecasts
- **1988**: **Concept proposed again, but for climate-change studies**, in two separate papers: by Bengtsson and Shukla, and byTrenberth and Olson
- 1990s: First-generation comprehensive global reanalysis products (~Ol-based)
 - NASA/DAO (1980 1993) from USA
 - NCEP/NCAR (1948 present) from USA
 - ERA-15 (1979 1993) from ECMWF with significant funding from USA
- Mid 2000s: Second-generation products (~3DVAR)
 - JRA-25 (1979 2004) from Japan
 - NCEP/DOE (1979 present) from USA
 - ERA-40 (1958 2001) from ECMWF with significant funding from EU FP5
- Today: third generation of comprehensive global reanalyses (~4DVAR or IAU)
 - JRA-55 (1958 2012) from Japan
 - NASA/GMAO-MERRA (1979 present) from USA
 - NCEP-CFSRR (1979 2008) from USA
 - ERA-Interim (1979 present) from ECMWF

Atmospheric reanalysis: becoming more diverse

 Regional reanalysis and down-scaling from global reanalysis

 Long-term reanalysis using only surfacepressure observations: 20th Century Reanalysis (20CR)

 Short-term reanalysis for chemistry& aerosols

How users exploit reanalysis data

- Monitor the observing system
 - Feedback on observational quality, bias corrections and a basis for homogenization studies of long data records that were not assimilated
- Develop climate models
 - Use reanalysis products for verification, diagnosis, calibrating output,, ...
- Drive users' models/applications
 - Use reanalysis as large-scale initial or boundary conditions for smaller-scale models (global→regional; regional→local), in various fields: ocean circulation, chemical transport, nuclear dispersion, crop yield, health warnings, …
- Use climatologies derived from reanalysis for direct applications
 - Ocean waves, resources for wind and solar power generation, insurance, ...
- Study short-term atmospheric processes and influences
 - Process of drying of air entering stratosphere, bird migration, ...
- Study of longer-term climate variability/trends
 - Requires caution due to changes in observations input
 - Lead to major findings in recent years in understanding variability

Growing recognition of reanalysis for climate application: BAMS "State of the Climate in 2009"

Plate 2.1. Global annual anomaly maps for those variables for which it is possible to create a meaningful 2009 anomaly estimate. Climatologies differ among variables, but spatial patterns should largely dominate over choices of climatology period. Dataset sources/names are as follows: lower stratospheric temperature (RSS MSU); lower tropospheric temperature (ERA-interim); surface temperature (NOAA NCDC); cloudiness (PATMOS-x); total column water vapor (SSM/I over ocean, ground based GPS over land); precipitation (RSS over ocean, GHCN (gridded) over land); river discharge (authors); mean sea level pressure (HadSLP2r); wind speed (AMSR-E); ozone (GOME2); FAPAR (SeaWIFS); Biomass Burning (GEMS/MACC). See relevant section text and figures for more details.

Temperature: Global anomalies July 2010

Hadley Centre

Surface Temperature Anomalies (degC, w.r.t. 1961-90)

NOAA/ NCDC

Two-metre temperature anomaly (C; relative to 1989-2009) for July 2010

Rainfall: Regional anomalies for 1x1 degree boxes

Summary of important concepts

- Reanalysis does <u>not</u> produce "gridded observations"
 - But it enables to extract information from observations in one, unique, theoretically consistent framework
- Reanalysis sits at the end of the (long) meteorological research and development chain that encompasses
 - observation and measurement collection,
 - observation processing and data exchange,
 - numerical weather prediction modelling and data assimilation
- Unlike NWP, a very important concern in reanalysis is the consistency in time, over several years
- Reanalysis is bridging slowly, but surely, the gap between the "weather datasets" and the "climate datasets"
 - Resolution gets finer
 - Reanalyses cover longer time periods, without gap
 - Helps different communities work together
 - Reanalysis has developed into a powerful tool for many users and applications

Current status of global reanalysis & Future outlook

• It is worth repeating as all ingredients continue to evolve:

- Models are getting better
- Data assimilation methods are getting better
- Observation processing is improving
- Old observations (paper records) are being rescued
- The technical infrastructure for running & monitoring improves constantly
- With each new reanalysis we improve our understanding of systematic errors in the various components of the observing system

• Major challenges for a future comprehensive reanalysis project:

- Bringing in additional observations (not dealt with in ERA-Interim)
- Dealing with model bias (ultimately responsible for problems with trends)
- Coupling with ocean and land surface
- Making observations used in reanalysis more accessible to users
- Providing meaningful uncertainty estimates for the reanalysis products

Further reading and on-line material

- Kalnay et al. (1996), "The NCEP/NCAR 40-Year Reanalysis Project", Bull. Am. Meteorol. Soc. 77 (3), 437-471
- Uppala et al. (2005), "The ERA-40 reanalysis", Q. J. R. Meteorol. Soc. 131 (612), 2961-3012, doi: 10.1256/qj.04.176
- Bengtsson et al. (2007), "The need for a dynamical climate reanalysis", Bull. Am. Meteor. Soc. 88 (4), 495-501
- SciDAC Review (2008), "Bridging the gap between weather and climate", on the web at <u>http://www.scidacreview.org/0801/pdf/climate.pdf</u> with contributions from G. P. Compo and J. S. Whitaker
- European reanalysis (ERA): <u>http://www.ecmwf.int/research/era</u>
- NCEP/NCAR reanalysis: <u>http://www.cdc.noaa.gov/data/reanalysis/reanalysis.shtml</u>
- NCEP CFSR: <u>http://cfs.ncep.noaa.gov/cfsr/</u>
- Japanese 25-year reanalysis (JRA-25): <u>http://jra.kishou.go.jp</u>
- NASA GMAO Modern Era Retrospective-analysis for Research and Applications (MERRA) <u>http://gmao.gsfc.nasa.gov/research/merra/</u>
- Dee et al. (2011), "The ERA-Interim reanalysis: configuration and performance of the data assimilation system ", *Q. J. R. Meteorol. Soc.*, **137** (656), 553-597
- <u>http://www.oldweather.org</u>
- <u>http://www.data-rescue-at-home.org</u>
- ECMWF Reanalysis

ERA-Interim data availability and access

- Jan 1979 until Feb 2011, with monthly updates
- Resolution: T255L60, 6-hourly upper-air fields (3-hourly for surface)
- Analysis + forecast products; monthly averages
- Access to products:
 - Member state users: MARS: full access
 - All users: ECMWF Public Data Server: http://data-portal.ecmwf.int/data/d/interim_daily/ Currently reduced resolution 1.5 deg x 1.5 deg and 37 pressure levels Will contain full resolution data... any time soon Years 1979-1988 available around mid-summer 2011

🗢 ERA Interim, Daily	Fields 🌳						
CECMWF			Home	Your Room Login	Contact Feedback Sit	e Map Search:	
Probabilities guists	About Us Overview Fore Getting here Order Committees Order	tucts S asts C Data A Software Pr	ervices omputing rchive repIFS	Research Modelling Reanalysis Seasonal	Publications Newsletters Manuals Library	News&Events Calendar Employment Open Tenders	
	ERA Interim, Daily Fields >	-1-1-1-					
Turns of Issuel	ERA Interim, Daily i	-ieids					
Potential temperature Potential vorticity Pressure levels Surface	It is now possible to acc the proper requests, ple request translated into the	ess this dataset in ase select the dat he language used	n batch using a ta required fron I by the batch s	Python or Perl sc n the form below a cripts.	ipt. <u>Find out more</u> . To nd then click on "View	easily feed the scripts with batch request" to get the	
FBA Interim Fields	Select date						
Daily Invariant Synoptic Monthly Means Monthly Means of Daily Means	Select a date range Start date: 1989-01-01 Select a list of mon	between 1989-0 En	d date: 2010-06	9 -<i>0</i>6-<i>30:</i> :-30			
Personal <u>Your Requests</u>	Jan Feb Mar Apr May 1989	Jun Jul Aug Sep O.	ct <u>Nov</u> Dec J <u>1990</u> <u>1992</u>	Jan Feb Mar Apr May	lun Jul Aug Sep Oct No:		
Data usage <u>Conditions</u>	1993		1994				
See also Data FAQ Data Servers Data Services GRIB decoder	1999						
	Jan Feb Mar Apr May Select All or Clear	Jun Jul Aug Sep Or	ct Nov Dec J	lan Feb Mar Apr May	lun Jul Aug Sep Oct No	/ Dec	
	Select Time						
	00:00:00 06:00:00	12:00:00	18:00:00				
Read www.ecmwf.int							

ERA-CLIM: data recovery efforts

