

WS on "Hierarchical Modeling of Climate", ICTP, July 18-22, 2011 Structural and Parametric Uncertainties in Climate Modeling

Masahiro Watanabe Atmosphere and Ocean Research Institute the University of Tokyo hiro@aori.u-tokyo.ac.jp

M. Kimoto, Y. Chikamoto, R. O'ishi, M. Mori, Y. Imada, S. Yasunaka (AORI, Univ of Tokyo)
T. Mochizuki, M. Chikira, T. T. Sakamoto, H. Tatebe, Y. Komuro, T. Suzuki ,
K. Takata, J. D. Annan, J. C. Haargreaves (JAMSTEC)
M. Ishii (JAMSTEC / MRI, JMA), T. Takemura (Kyushu Univ)
T. Nozawa, H. Shiogama, T. Yokohata, T. Ogura, S. Emori (NIES)

Outline

✓ Error and uncertainty in CGCM

 Approaches for dealing with the uncertainty in climate simulations

✓ Examples:
 #1 ENSO
 #2 Climate sensitivity

✓ Summary

Definition of terms

Error : deviations from 'true' when known

 Uncertainty: spread of solutions when 'true' is not known, ill-sampled, or inherently probabilistic

Global-mean SAT anomaly

In general

In general

Error is decreasing in CMIP models, but uncertainty remains similar

Combined metric (« RMS error)

Best model in CMIP1 ~worst model in CMIP3
 Increasing no. of models, many of which DO NOT apply q-flux

Equilibrium climate sensitivity to 2xCO₂ in CMIP models

	FAR	SAR	TAR	AR4	AR5
climate sensitivity	1.5-4.5K	1.0-3.5K	1.5-4.5K	2.1-4.4K	??

Mitchell et al. (1990), Kattenberg et al. (1996), Cubasch et al. (2001), IPCC (2007)

What can we do for the uncertainty?

- Reducing uncertainty Use of observations (reanalysis / satellites / palaeo)
- Quantifying uncertainty
- Understanding sources of uncertainty

Sources of climate projection uncertainty wrt the lead time

Two types of model's uncertainty

Uncertainty due to structural differences (<- MME)
 Uncertainty due to parametric differences (<- PPE)

Annual-mean precipitation biases in

Structural similarity as well as differences among models

Uncertainty in ENSO simulation

Diversity in ENSO simulations

Std Dev of the Nino 3 SST anomaly in CMIP3 models

in records < 100y (Wittenberg 2009)

ENSO in MIROC3/MIROC5

A 'better' model should be used to examine how ENSO amplitude is controlled

ENSO in GCMs: Recent progress

✓ ENSO diversity in CGCMs is likely due to the atm. component

- Schneider 2002, Guilyardi et al. 2004, 2009

✓In particular, convection scheme potentially has a great impact

- CMT Wittenberg et al. 2003, Kim et al. 2008, Neale et al. 2008
- Entrainment Wu et al. 2007, Neale et al. 2008, Watanabe et al. 2011
- Low clouds Toniazzo et al. 2008, Lloyd et al. 2009

Entrainment rate ε & updraft velocity *w* (Gregory 2001, Chikira & Sugiyama 2010)

Parameter sweep experiments using MIROC5

Perturbation to λ : $\lambda = 0.5$ (L500), 0.525 (L525), 0.55 (L550), 0.575 (L575) CTL & 2xCO2 runs: 100 yrs x 4 cases x 2 runs

Large λ -> suppress deep clouds

ENSO control mechanism in MIROC5

Mean precip-ENSO in CMIP3 models

Mean precip-ENSO in CMIP3 models

Causes for ENSO amplitude change

Uncertainty in climate sensitivity and feedbacks

Diversity in CFMIP1 models

Equilibrium climate sensitivity and feedbacks

Dufresne & Bony (2008)

Well-known fact: uncertainty in climate sensitivity largely explained by different sign/magnitude of the cloud feedback

Importance to isolate robust and fragile parts of

the cloud feedback

Change in stable regime frequency in CFMIP1

Sorted responses in CFMIP1

Change in SWcld: fragile even sign

Parametric uncertainty

Perturbed Physics Ensemble (PPE)

- Designed for systematic sampling of uncertainty in a single model framework
- ✓ Complementary ensemble to CMIP MME
- Some advantages over the "ensemble of opportunity"
- ✓ PPEs have been done with
 - HadCM3/HadSM
 - NCAR CAM3.x/4
 - MIROC3.2/5
 - ECHAM5

Climate sensitivity in HadSM PPE

Murphy et al. (2004)

Climate sensitivity in QUMP & CMIP3

✓ Difference in parameter sets & perturbation strategy

MIROC PPEs

MIROC3.2 PPE (JUMP project, Annan et al. 2005) T20L20 slab model 13 parameters

✓ Perturbation w/ EnKF

□ MIROC5 PPE

(Shiogama et al. 20011, in prep.)
✓ T42L40 full CGCM
✓ 10 parameters
✓ Perturbation w/ Latin hypercube + emulator

of parameter

Courtesy of H Shiogama

ENSO and climate sensitivity?

Reasons are not clear and may be different in different models, but a common feature of strong ENSO <-> low CS

Combined structural/parametric uncertainty

Understanding how parameter-driven uncertainties in PPEs depend on structural properties of the model

Forcing-Feedback in two PPEs

Multi-Physics Ensemble (MPE)

Replacing one or more schemes in MIROC5 w/ old ones:

✓ Std
 ✓ Oldcld
 ✓ Oldcum
 ✓ Oldvdf
 ✓ Oldcld+cum
 ✓ Oldcum+vdf
 ✓ Oldcld+vdf
 ✓ Oldcld+cum+vdf

Structural difference > Parametric difference
 Any strategy to link them each other ?

Forcing-Feedback in two PPEs

Multi-Physics Ensemble (MPE)

Replacing one or more schemes in MIROC5 w/ old ones:

✓ Std
 ✓ Oldcld
 ✓ Oldcum
 ✓ Oldvdf
 ✓ Oldcld+cum
 ✓ Oldcum+vdf
 ✓ Oldcld+vdf

✓ Oldcld+cum+vdf

Structural difference > Parametric difference
 Any strategy to link them each other ?

MPE: Filling the gap between PPEs

'Feedback occurs thru the interaction of a suite of parameterized processes rather than from any single process' (Zhang & Bretherton 2008)

Reducing error -> reducing uncertainty

"NWP methods show promise for improving parameterizations in climate GCMs" (Phillips et al. 2004)

Climate sensitivity & model error (analysis increments)

Rodwel and Palmer (2007)

Summary

One of the ultimate goals for climate modeling: eliminating error-induced uncertainty

MME can/should not necessarily be converged

□ Importance of:

- Identifying robust/fragile parts & timescales of climate response/feedback
- Attributing the diversity of GCMs to individual processes/interactions

Extensive use of various ensembles & methods (MME/PPE/MPE/NWP)

Importance to understand response/feedback

on different timescales

Watanabe et al. (2011, submitted to CD)

+ ann. mean, single run (150y)

- \circ decadal mean, single run
- \triangle ann. mean, ensemble avg (20y)

Courtesy of T Andrews

What can we do for the uncertainty?

- Reducing uncertainty Use of observations (reanalysis / satellites / palaeo)
- Quantifying uncertainty
- Understanding sources of uncertainty

≈ Understanding model's behavior associated with parameterized physical processes

- Radiation
- Convections
- Clouds
- Turbulence
- Aerosols

Attributing uncertainty

Sources of climate projection uncertainty wrt the lead time

Hawkins and Sutton (2008)

Uncertainty due to model ----- where does it come from?

Combined structural/parametric uncertainty

Combining perturbed parameter ensembles, multi-model ensembles and observational constraints

Harris et al. (2010) [Courtesy of J Murphy]

Combined structural/parametric uncertainty

Klocke et al. (2011)

Error-feedback relationship is model-dependent

MPE: Filling the gap between PPEs

MPE enables to systematically explore the processes generating different feedbacks Adjusted SCRF in 2xCO₂ runs

Impacts of individual parameterization schemes

Run	CAM4	+cloud	+rad	+aero	+PBL	+ShCu	CAM5
ΔT_{eff}	2.8	2.9	3.7	3.5	2.9	4.4	4.4

New shallow cumulus scheme works toward positive SCRF in CAM5

Gettleman et al. (2011, submitted to JC)

How to evaluate climate sensitivity?

• In a CGCM $2xCO_2$ experiment (=>20y), N = F + $\alpha \Delta T$

and plot N against ΔT

- Assuming constant F and α on short timescale
- N can be decomposed into SW, LW and their clear-sky, cloud components

Gregory and Webb (2008)

- Cloud component is surprising: F_{LC} and F_{SC} are non-zero!
- This caused by rapid local changes to the vertical temperature profile due to the altered radiative heating, with consequent changes to stability, vertical mixing, and the moisture profile.
- Cloud contribution to F = "tropospheric adjustment" of CO2 forcing

3

4

5

6

7

8

9

Uncertainty in ENSO amplitude

Wittenberg (2009)

Large uncertainty for the 'true' ENSO amplitude in records < 100y

Mechanism of convective control

Subsidence region (cold tongue) is controlled by the convective region (ITCZ)

Question

Small but cooler cold tongue (=larger zonal SST gradient) for large λ : is it consistent with weaker ENSO?

Question

Cooler cold tongue & weaker ENSO can coexist if $\lambda^{-1} \propto bL$

What can we do for the uncertainty?

- Reducing uncertainty Use of observations (reanalysis / satellites / palaeo)
 Climate sensitivity
 - Constraining:
 - *Modify PDF by using observations
 - *Weighting models using a metric
 - *Difficulty due to error/uncertainty in observations, too!

MIROC updates after AR4

MIROC3.2 (for AR4)

MIROC5 (for AR5)

Atmos.	Dynamical core	Spectral+semi-Lagrangian (Lin & Rood 1996)	Spectral+semi-Lagrangian (Lin & Rood 1996)
	V. Coordinate	Sigma	Eta (hybrid sigma-p)
	Radiation	2-stream DOM 37ch (Nakajima et al. 1986)	2-stream DOM 111ch (Sekiguchi et al. 2008)
	Cloud	Diagnostic (LeTreut & Li 1991) + Simple water/ice partition	Prognostic PDF (Watanabe et al. 2009) + Ice microphysics (Wilson & Ballard 1999)
	Turbulence	M-Y Level 2.0 (Mellor & Yamada 1982)	MYNN Level 2.5 (Nakanishi & Niino 2004)
	Convection	Prognostic A-S + critical RH (Pan & Randall 1998, Emori et al. 2001)	Prognostic AS-type, but original scheme (Chikira & Sugiyama 2010)
	Aerosols	simplified SPRINTARS (Takemura et al. 2002)	SPRINTARS + prognostic CCN (Takemura et al. 2009)
Land/ River		MATSIRO+fixed riv flow	new MATSIRO+variable riv flow
Ocean		COCO3.4	COCO4.5
Sea-ice		Single-category EVP	Multi-category EVP

Mean climatology

Annual mean precipitation CMAP

JJA precipitation

MIROC5

✓ Effect of increased resolution✓ Effect of the new model physics

Precipitation metric over the tropical oceans

1961-1990 annual avg. from 20C run

MIROC₃med

GFDL CM2.0

Model performance: zonal-mean states

4.2-3.2

4.2bias

3.2bias

Property of MIROC5 215 hPa cloud ice

After Waliser et al. (2009)

Property of MIROC5

- ✓ prognostic PDF cloud scheme
- ✓ prognostic ice microphysics
- ⇒ better representation of cloud and cloud-radiative feedback
- \Rightarrow how to validate?

CloudSAT and CALIPSO

- * launched in April, 2006* 3D cloud property w/ rader/
 - 3D cloud property w/ rader/ lidar measurements

Latitude - temperature cross section of the ratio of cloud particle type

Sep-Nov 2006, CloudSAT/CALIPSO

Sep-Nov climatology, MIROC4.5

CALIPSO

CloudSat

ENSO in MIROC5

A-O coupling strength

Double ITCZ problem

Precipitation seasonal cycle over the E. Pacific

Bellucci et al. (2010)

Perturbing cumulus convections

Chikira-Sugiyama convection scheme:Mixture of A-S and Gregory schemesEntrainment rate (ε)• Conventional A-S scheme: prescribed• C-S scheme: state dependent• Θ

$$\varepsilon = \lambda \frac{aB}{w^2}$$
, $\frac{\partial w^2}{\partial z} = 2a(1-\lambda)B - \frac{w^2}{\tau}$

Vertical profiles of $\boldsymbol{\epsilon}$ in a single column model

Cloud type

Efficiency of the entrainment controlled by λ ^{Chikira and Sugiyama (2010, JAS)} (large λ -> suppress deep clouds)

Sensitivity experiments w/ T42 MIROC5

ехр	λ	Length
L500	0.5	85
L525	0.525	85
L550	0.55	85
L575	0.575	85

* λ =0.53 is the default value in the official T85 CTL

ENSO in MIROC5

Comparison of the ENSO structure

As ENSO amplifies, maximum in both precipitation and τ_x anomalies be stronger but shifted to the western Pacific -> reduction in the effective Bjerknes feedback

Larger λ (efficient cumulus entrainment) -> drier & colder mean state in E. Pacific <-> weaker ENSO

Mean state differences

