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Outline 

  Error and uncertainty in CGCM 

  Approaches for dealing with the 
uncertainty in climate simulations 

  Examples: 
      #1 ENSO 
      #2 Climate sensitivity 

  Summary 



Definition of terms 

  Error :  deviations from ‘true’ when known 
 Uncertainty: spread of solutions when 

‘true’ is not known, ill-sampled, or 
inherently probabilistic  

Knutti and Hegerl (2008) 

1900       1950       2000       2050       2100 
year 

Model A 

Model B 
Obs 

Global-mean SAT anomaly 



In general ……. 

Error reduction is possible by 
  tuning model parameters 
  incorporating/updating 

parameterization schemes 
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In general ……. 

Uncertainty may either increase or 
decrease in more complex model 
(e.g. CGCM -> ESM) 

Model’s complexity 
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Error is decreasing in CMIP models, but uncertainty remains similar 

Combined metric (∝ RMS error)  

CMIP1 

 Best model in CMIP1 ～worst model in CMIP3 
 Increasing no. of models, many of which DO NOT apply q-flux  

CMIP2 
CMIP3 

Reichler & Kim (2008) 

FAR SAR TAR AR4 AR5 
climate sensitivity 1.5-4.5K 1.0-3.5K 1.5-4.5K 2.1-4.4K ?? 

Mitchell et al. (1990), Kattenberg et al. (1996), Cubasch et al. (2001), IPCC (2007) 

Equilibrium climate sensitivity to 2xCO2 in CMIP models 



What can we do for the uncertainty? 

  Reducing uncertainty – Use of observations 
(reanalysis / satellites / palaeo) 

  Quantifying uncertainty 

  Understanding sources of uncertainty 

Hawkins and Sutton  (2008) 

Sources of climate projection uncertainty wrt the lead time 
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Uncertainty due to model  
      where does it come from? 



Two types of model’s uncertainty 

 Uncertainty due to structural differences (<- MME) 
 Uncertainty due to parametric differences (<- PPE ) 

Annual-mean precipitation biases in 
CMIP3 CMAP MME 

IPCC (2007) 

Structural similarity as well as differences among models 



Uncertainty in ENSO simulation 



Diversity in ENSO simulations 

Guilyardi et al. (2009) Model # 

Std Dev of the Nino 3 SST anomaly in CMIP3 models 

0.2～
1.9K

!! 

  Error? But, large uncertainty for the ‘true’ ENSO amplitude 
      in records < 100y (Wittenberg 2009) 



Observations MIROC3. T42 MIROC3. T213 MIROC5. T85 

impact of resolution impact of new model physics 

for CMIP3 for CMIP5 for CMIP5 

Nino3 
SST 

Regressed  
 

Regressed 
eq. ocean 

temperature  

A ‘better’ model should be used to examine how ENSO 
amplitude is controlled  



ENSO in GCMs: Recent progress 

 ENSO diversity in CGCMs is likely due to the atm. 
component 
     - Schneider 2002, Guilyardi et al. 2004, 2009 

 In particular, convection scheme potentially has a great 
impact 

•  CMT  - Wittenberg et al. 2003, Kim et al. 2008, Neale et al. 2008  
•  Entrainment -  Wu et al. 2007, Neale et al. 2008, Watanabe et al. 2011 
•     Low clouds  - Toniazzo et al. 2008, Lloyd et al. 2009 

Parameter sweep experiments using MIROC5 

Entrainment rate ε & updraft velocity w (Gregory  2001, Chikira & Sugiyama 
2010) 

Large λ -> suppress deep clouds 

Perturbation to λ:   λ =0.5 (L500), 0.525 (L525), 0.55 (L550), 0.575 (L575)	


CTL & 2xCO2 runs: 100 yrs x 4 cases x 2 runs 



Watanabe et al. (2011, JC) 

Guilyardi et al. (2009) 

ENSO & mean state error 

wet    cold tongue    dry 

Direct effect of convection 
Coupled feedbacks 



Different axes of the parametric and structural uncertainties !! 

CTL or 20C 
(present) 

GDFL CM2.1 
(by J-S Kug) 

MIROC5 

CMIP3 

wet    cold tongue    dry 



Sensitivity to 2xCO2 // axis of the parametric uncertainty in MIROC5 

2xCO2 or A1b 
(future)  

wet    cold tongue    dry 



Causes for ENSO amplitude change 
CZ model w/  
empirical atmosphere 

Positive contribution  
to amplified ENSO: 

  Shoaling of mean H 
  Eastward shift of τsignal 
  Eastward shift of τnoise 
 Change in noise-coherence? 

τsignal multiplicative τnoise 



Uncertainty in climate 
sensitivity and feedbacks 



Change in global-mean radiative budgets 

Diversity in CFMIP1 models 

Dufresne & Bony (2008) 

Equilibrium climate sensitivity and feedbacks 

Clouds 
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Well-known fact: uncertainty in climate sensitivity largely explained by 
different sign/magnitude of the cloud feedback 



Watanabe et al. (2011, submitted to CD) 

Sorted responses in CFMIP1 

Importance to isolate robust and fragile parts of  
the cloud feedback 

Courtesy of M Webb 

Unstable                 Stable 

Change in stable regime frequency in CFMIP1  

  Increasing LTS: sign robust (but not magnitude) 
 Change in SWcld: fragile even sign 

+ 

- 

+ 

LTS  

SWcld 



Parametric uncertainty 

Murphy et al. (2004) 

Collins et al. (2010) 

Climate sensitivity in QUMP & CMIP3 

CMIP3 

 Designed for systematic sampling of  
    uncertainty in a single model framework 

 Complementary ensemble to CMIP MME 

  Some advantages over the  
     “ensemble of opportunity” 

  PPEs have been done with 
•  HadCM3/HadSM 
•  NCAR CAM3.x/4 
•  MIROC3.2/5 
•  ECHAM5 

 Difference in parameter sets & perturbation strategy  

Perturbed Physics Ensemble (PPE) 

2.4-5.4K 

Climate sensitivity in HadSM PPE 

N=53 



MIROC PPEs 

 MIROC3.2 PPE (JUMP project, Annan et al. 2005) 
  T20L20 slab model 
  13 parameters 
  Perturbation w/ EnKF 

 MIROC5 PPE  
    (Shiogama et al. 20011, in prep.) 
  T42L40 full CGCM 
  10 parameters 
  Perturbation w/ Latin  
    hypercube + emulator 

Corr. between feedbacks and 
parameters 

Courtesy of H Shiogama 

MIROC5 

# of parameter 

LWcld LWclr 

SWclr SWcld 

NET 



ENSO and climate sensitivity? 

Courtesy of H Shiogama 
Toniazzo et al. (2008) 
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Reasons are not clear and may be different in different models, 
but a common feature of strong ENSO <-> low CS 



Combined structural/parametric uncertainty 

MIROC PPE vs HadCM3 PPE 

Yokohata et al. (2011) 

Understanding how parameter-driven uncertainties in 
PPEs depend on structural properties of the model 



Forcing-Feedback in two PPEs 

  Structural difference > Parametric difference 
  Any strategy to link them each other ?   

MIROC3 PPE 

MIROC5 PPE 

MIROC5  
    AGCM 

Multi-Physics Ensemble 
(MPE) 

Replacing one or more 
schemes in MIROC5 w/ 
old ones: 

  Std 
 Oldcld 
 Oldcum 
 Oldvdf 
 Oldcld+cum 
 Oldcum+vdf 
 Oldcld+vdf 
 Oldcld+cum+vdf 

Climate  
sensitivity 



Forcing-Feedback in two PPEs 

MIROC5 MPE 

MIROC5 PPE 

MIROC3 PPE 

MIROC5  
    AGCM 

Multi-Physics Ensemble 
(MPE) 

Replacing one or more 
schemes in MIROC5 w/ 
old ones: 

  Std 
 Oldcld 
 Oldcum 
 Oldvdf 
 Oldcld+cum 
 Oldcum+vdf 
 Oldcld+vdf 
 Oldcld+cum+vdf 

  Structural difference > Parametric difference 
  Any strategy to link them each other ?   

Climate  
sensitivity 



MPE: Filling the gap between PPEs 

‘Feedback occurs thru the interaction of a suite of parameterized 
processes rather than from any single process’ (Zhang & Bretherton 2008) 

SWcld feedbacks 

Oldcld        -> small impact 
Oldvdf        -> small impact 
Oldcld+vdf -> large impact!!  



Reducing error -> reducing uncertainty 

Rodwel and Palmer (2007) 

“NWP methods show promise for improving  
parameterizations in climate GCMs” (Phillips et al. 2004) 

Climate sensitivity & model error (analysis increments) 

Simulated climate sensitivity [K] 
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   Initial tendency analysis  

      can weight the models in     
      MME/PPE (Rodwl & Palmer 2007) 

  Transpose AMIP II  
    (e.g. Boyle et al. 2005,  
              Martin et al. 2010) 
 “seamless model  

assessment” 

High sensitivity models 

Initial tendency 



Summary 

  One of the ultimate goals for climate modeling: 
eliminating error-induced uncertainty  

  MME can/should not necessarily be converged 

  Importance of: 
  Identifying robust/fragile parts & timescales 
       of climate response/feedback 
  Attributing the diversity of GCMs to individual 

processes/interactions  

  Extensive use of various ensembles & methods 
      (MME/PPE/MPE/NWP …… ) 



MIROC5  4xCO2 

＋ ann. mean,  single run (150y) 
○ decadal mean, single run 
△  ann. mean, ensemble avg (20y) 
★  initial month of △ 

slope in the  
natural variability 

ΔSAT [K] 

Δ
C

R
E

 [W
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2 ] 

Courtesy of T Andrews 

Watanabe et al. (2011, submitted to CD) 

HadGEM2-ES 4xCO2 

Importance to understand response/feedback  
on different timescales 





What can we do for the uncertainty? 
  Reducing uncertainty – Use of observations 

(reanalysis / satellites / palaeo) 

  Quantifying uncertainty 

  Understanding sources of uncertainty 

Beljaars (2004) 

 ≈ Understanding model’s behavior associated  
     with parameterized physical processes 

•  Radiation 
•  Convections 
•  Clouds 
•  Turbulence 
•  Aerosols 
•  ……. 



Attributing uncertainty 

Hawkins and Sutton  (2008) 

Sources of climate projection uncertainty wrt the lead time 

Uncertainty due to model ----- where does it come from? 



Combined structural/parametric uncertainty 

Harris et al. (2010) [Courtesy of J Murphy] 

Combining perturbed parameter ensembles, multi-model 
ensembles and observational constraints 



Combined structural/parametric uncertainty 

Klocke et al. (2011) 

ECHAM5+slab PPE N=50 

MME 

PP
E 

ECHAM PPE 

CMIP3 MME 

Error-feedback relationship is 
model-dependent 



MPE: Filling the gap between PPEs 

Gettleman et al. (2011, submitted to JC) 

Adjusted SCRF in 2xCO2 runs 

CAM4SOM CAM5SOM 

MPE enables to systematically explore the processes  
generating different feedbacks 

Run CAM4 +cloud +rad +aero +PBL +ShCu CAM5 

ΔTeff 2.8 2.9 3.7 3.5 2.9 4.4 4.4 

Impacts of individual parameterization schemes 

New shallow cumulus scheme works toward positive SCRF in CAM5  

ΔTeff=3.1K ΔTeff=4.2K 



•  In a CGCM 2xCO2 
experiment (=>20y),  

    N = F + α ΔT 
　  and plot N against ΔT 
•  Assuming constant F 

and α on short timescale 
•  N can be decomposed 

into SW, LW and their 
clear-sky, cloud 
components 

How to evaluate climate sensitivity? 

•  Cloud component is surprising: FLC and FSC are non-zero! 
•  This caused by rapid local changes to the vertical temperature profile due to 

the altered radiative heating, with consequent changes to stability, vertical 
mixing, and the moisture profile.  

•  Cloud contribution to F = “tropospheric adjustment” of CO2 forcing 

Gregory and Webb (2008) 



Uncertainty in  
ENSO 

amplitude 

Wittenberg (2009) 

ENSO  
timescale 

Large uncertainty for the ‘true’ 
ENSO amplitude in records < 100y 



Dry cold tongue  
-> reduced effective  
    Bjerknes feedback 

Wet cold tongue  
-> enhanced effective  
    Bjerknes feedback 

Subsidence region (cold tongue) is controlled by 
the convective region (ITCZ) 



Question 
Small but cooler cold tongue (=larger zonal SST gradient)  
for large λ: is it consistent with weaker ENSO? 

A simple tropical climate model (Jin 1996, Watanabe 2008) Stationary solutions 



Question 

Cooler cold tongue & weaker ENSO can coexist if λ-1 ∝ bL 

Obs. Mean Te 

Larger λ ? Larger λ ? 
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Bjerknes feedback efficiency 

Std of J96 

Range of mean Te 
in four runs 



What can we do for the uncertainty? 

  Reducing uncertainty – Use of observations 
(reanalysis / satellites / palaeo) 

Knutti and Hegerl (2008) 

pr
ob

ab
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ty
 Constraining:   

*Modify PDF by using observations 

*Weighting models using a metric 

*Difficulty due to error/uncertainty in 
   observations, too! 

Instruments 

CGCMs 

Climate sensitivity 



MIROC3.2 (for AR4) MIROC5 (for AR5) 
Atmos. Dynamical core  Spectral+semi-Lagrangian 

(Lin & Rood 1996) 
Spectral+semi-Lagrangian 
(Lin & Rood 1996) 

V. Coordinate Sigma  Eta (hybrid sigma-p) 

Radiation 2-stream DOM 37ch  
(Nakajima et al. 1986) 

2-stream DOM 111ch  
(Sekiguchi et al. 2008) 

Cloud  Diagnostic (LeTreut & Li 1991) 
+ Simple water/ice partition 

Prognostic PDF (Watanabe et al. 
2009) + Ice microphysics (Wilson & 
Ballard 1999)  

Turbulence M-Y Level 2.0 
 (Mellor & Yamada 1982) 

MYNN Level 2.5 
 (Nakanishi & Niino 2004) 

Convection Prognostic A-S + critical RH 
(Pan & Randall 1998, Emori et 
al. 2001) 

Prognostic AS-type, but original 
scheme (Chikira & Sugiyama 2010) 

Aerosols simplified SPRINTARS 
(Takemura et al. 2002) 

SPRINTARS + prognostic CCN 
(Takemura et al. 2009) 

Land/ 
River 

MATSIRO+fixed riv flow new MATSIRO+variable riv flow 

Ocean COCO3.4 COCO4.5 

Sea-ice Single-category EVP Multi-category EVP 



Mean climatology 

JJA precipitation 
TRMM 

MIROC3.2me
d 

MIROC3.2hi 

MIROC5 

Watanabe et al. (2010, JC) 

Annual mean precipitation 

 Effect of increased resolution 
 Effect of the new model physics 



(Taylor, 2001) 

TRMM(Ref.) 

reanalysis 
CMIP3 

MIROC5 

LowScore HighScore Hirota et al. (2011, JC) 



20C mean SST 

1961-1990 annual avg. from 20C run 



4.2-3.2 4.2bias 3.2bias 

Temperature 

Specific  
   humidity 

Cold bias around  
tropopause removed 

Dry bias around  
PBL top removed 



After Waliser et al. (2009) 



CloudSAT and CALIPSO 

* launched in April, 2006 
* 3D cloud property w/ rader/ 
   lidar measurements 

  prognostic PDF cloud scheme 
  prognostic ice microphysics 
⇒ better representation of cloud and 
     cloud-radiative feedback 
⇒ how to validate? 

Sep-Nov 2006, CloudSAT/CALIPSO Sep-Nov climatology, MIROC4.5 

Courtesy of H Okamoto 



A-O coupling strength 

Guilyardiet al. (2009) 

MIROC3med 

MIROC5 



Precipitation seasonal cycle over the E. Pacific 

Bellucci et al. (2010) 

J  F  M  A M  J  J  A S  O  N  D  

CMAP 

MIROC5 

30N 
20N 
10N 
EQ 
10S 
20S 
30S 

30N 
20N 
10N 
EQ 
10S 
20S 
30S 



Efficiency of the entrainment controlled by λ	


(large λ -> suppress deep clouds) 

exp  λ  Length 
L500 0.5 85 
L525 0.525 85 
L550 0.55 85 
L575 0.575 85 

* λ=0.53 is the default  
   value in the official T85 CTL 

Chikira and Sugiyama (2010, JAS) 

Entrainment rate  (ε)	


 Conventional A-S scheme: prescribed 
 C-S scheme: state dependent 

Chikira-Sugiyama convection scheme: 
Mixture of A-S and Gregory schemes A-S C-S  

Vertical profiles of ε in a single column model 	



Cloud type	
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L500 

L525 

L550 

L575 

Reality? 

artificial?  CP El Niño? 

Obs. 

GCM 



Comparison of the ENSO structure 

As ENSO amplifies, maximum in both precipitation and τx anomalies be stronger  
but shifted to the western Pacific -> reduction in the effective Bjerknes feedback 

Precipitation 

Zonal stress 

Nino3-regression along EQ 

longitude Lloyd et al. (2009) 
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SST 
Deviations from the ensemble mean 

precip. 

L500 

L525 

L550 

L575 

E
N

S
O

 am
plitude 

Larger λ (efficient cumulus entrainment)  
-> drier & colder mean state in E. Pacific <-> weaker ENSO 



Mean state differences 
Model clim. 

ω	



Qcum 

L575-L500 

More 
congestus? 




