GCM projections of mid-latitude storm tracks viewed through the prism of low-order models.

Christina Karamperidou

with James F. Booth (NASA GISS/Columbia U.) Upmanu Lall (Columbia U.) & Francesco Cioffi (U. of Rome)

Department of Earth & Environmental Engineering, Columbia University

Can we get insights into projected changes & predictability of mid-lat atmospheric circulation through the prism of a low-order model?

• Observations support the L84 view of surface temperature gradients as important drivers of mid-latitude jet and eddy variability.

We reduce GCMs to the L84 space and find:
a) model biases in the temperature gradients
b) differing model response and sensitivity to
decreasing temperature gradients due to AGW.

• Tropical-extratropical teleconnections and their potential changes are manifest in mid-lat predictability.

The Lorenz (1984) model

Lorenz, E.N. (1984,1990); van Veen (2003); Roebber et al. (1995,1997,2009)

Are the L84 results qualitatively consistent with observations and comprehensive models?

Initial work: Jain et al. (1998) Karamperidou et al. (2011), in review

Surface Temperature Gradients

Joint pdf of gradients (DJF):

The {EPG,OLC} combination matters.

There is a clear shift of their joint pdf towards minimum values.

 Poleward shift of the jet and prcp regions when going from the upper to lower 25th %ile of the joint pdf.

Normalize the historical values w.r.t F,G parameters.

Run a 'global warming' paradigm (1989) and ENSO cases.

Results are qualitatively consistent with expectations from observations and GCMs (e.g. Lu et al. 2008).

• Observations support the L84 view of surface temperature gradients as important drivers of mid-latitude jet and eddy variability.

We reduce GCMs to the L84 space and find

a) model biases in the temperature gradients
b) differing model response and sensitivity to
decreasing temperature gradients due to AGW.

 Tropical-extratropical teleconnections and their potential changes are manifest in mid-lat predictability.

• Observations support the L84 view of surface temperature gradients as important drivers of mid-latitude jet and eddy variability.

We reduce GCMs to the L84 space and find:
a) model biases in the temperature gradients
b) differing model response and sensitivity to
decreasing temperature gradients due to AGW.

 Tropical-extratropical teleconnections and their potential changes are manifest in mid-lat predictability.

Eddies: Intensification and longitudinal movement during the winter

GCM simulations: Jet stream and Eddy energy phase space

Not much change in intensity and position of the N.Atlantic jet in the A2 simulation.

The first model shows some equatorward shifts that were to be expected from its response to EPG decreases.

Less variability in the models compared to reanalysis.

No significant changes between the 20th century and A2 simulations.

Enhanced storm variability in the A2 simulations.

Still, less variability than reanalysis

- a) Temperature gradients are decreasing in the 21st century simulations.
- b) One model that
 - 1) has the opposite than expected response to the decreasing temperature gradients
 - 2) has consequent discrepancies in the precipitation response to decreasing gradients
 - 3) shows no/equatorward shifts in the jet in the N. Atlantic region in 21st century.
- c) A second model that
 - 1) responds to decreasing temperature gradients as expected
 - 2) shows consistent precipitation changes in response to decreasing gradients
 - 3) shows little poleward shift in the N. Atlantic jet in the 21st century.
- d) Neither model shows significant changes in the eddy components.
- e) Both models have less storm variability than reanalysis.

• Observations support the L84 view of surface temperature gradients as important drivers of mid-latitude jet and eddy variability.

We reduce GCMs to the L84 space and find
a) model biases in the temperature gradients
b) different model responses and sensitivity to decreasing temperature gradients.

• Tropical-extratropical teleconnections and their potential changes are manifest in mid-lat predictability.

Local Lyapunov Exponents:

Local Lyapunov Exponents (LLE):

divergence of trajectories in the time-delayed phase-space reconstruction of each PC.

- **Low** LLE implies **enhanced** predictability in a 16-month window.
- **High** LLE implies **reduced** predictability in a 16-month window.

Local Lyapunov Exponents:

Correlation of NINO3.4 & LLEs (measure of teleconnection):

	Jet Intensity (PC1)	Jet Position (PC2)	Eddy Intensity (PC1)	Eddy Position (PC2)	model
NINO3.4	-0.16	-0.44	-0.07	-0.25	ERA-Interim
NINO3.4	-0.038	0.14	0.008	0.05	CM2.0-20cm3
NINO3.4	-0.06	-0.29	-0.28	-0.08	CM2.0-sresA2
NINO3.4	-0.06	-0.22	0.05	-0.14	CM2.1-20cm3
NINO3.4	0.01	-0.01	-0.1	0.18	CM2.1-sresA2

This measure seems consistent with the 20th and 21st run composites of the jet and storms w.r.t. ENSO. A change in the teleconnection is noted in the 21st century simulations.

• When brought to a 'real-parameter' space, the L84 model gives results consistent with expectations.

The surface temperature gradients that drive the L84 model are:
(a) reflecting GW signals
(b) useful diagnostic indicators of singulation patterns

(b) useful diagnostic indicators of circulation patterns.

CCMs COMs Observations hich:

We reduced the GCM simulations to an L84-inspired variable space, which:
(a) contains the basic info about persistence and predictability, and
(b) provides a simplified, yet comprehensive, description of circulation features.

• Model biases in the temperature gradients affect the temporal representation of circulation and precipitation in the models.

 Differing responses of circulation to decreasing temperature gradients are reflected in the GW projections.

 \rightarrow Large-scale prcp correction on the basis of temperature gradients could be possible.

• Predictability propagation as a measure of tropical-extratropical teleconnection? Do teleconnections change with global warming? (e.g. Wu et al.)

• Variability in mid-lat precipitation associated with ENSO may swamp the GW signal?

•Abarbanel, H., R. Brown, J. Sidorowich, and L. Tsimring (1993), The analysis of observed chaotic data in physical systems, Reviews of Modern Physics, 65(4), 1331–1392.

•Bryant, P., R. Brown, and H. Abarbanel (1990), Lyapunov exponents from observed time series, Physical Review Letters, 65(13), 1523–1526.

•Karamperidou, C., F. Cioffi, and U. Lall, Surface temperature gradients as diagnostic indicators of mid-latitude circulation dynamics, in review, J. Clim.

•Lorenz, E., 1984: Irregularity: a fundamental property of the atmosphere. Tellus A, 36, 98-100.

•Lorenz, E., 1990: Can chaos and intransitivity lead to interannual variability? Tellus, 42.

•Lu, J., G. Chen, and D. Frierson, 2008: Response of the Zonal Mean Atmospheric Circulation to El Nino versus Global Warming. J. Climate, 21 (22), 5835-5851.

Roebber, P., 1995: Climate variability in a low-order coupled atmosphere-ocean model, Tellus A, 47 (4), 473-494.

Roebber, P., 2009: Planetary waves, cyclogenesis, and the irregular breakdown of zonal motion over the north

atlantic. Mo. Wea. Rev., 137.

•Roebber, P., A. Tsonis, and J. Elsner, 1997: Do climate simulations from models forced by averaged sea surface temperatures represent actual dynamics? Nonlinear Processes in Geophysics, 4 (2), 93-100.

van Veen, L., 2003: Baroclinic flow and the lorenz-84 model. Int. J. Bifur. Chaos, 13, 2117-2139.

•Yin, J., 667 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32.

Reserve Slides

Eddies vs. jet

GCM simulations: EOF analysis

GCM simulations: EOF analysis CM2.1 20cm3 CM2.1 sresA2 CM2.0 20cm3 CM2.0 sresA2 3 22

Longitude

GCM simulations: Changes between upper and lower 25th percentile

CM2.0 20cm3

~ Jet Energy (PC1)

~ Eddy Energy (PC1)

~ Jet Energy (PC2)

CM2.1 20cm3

~ Jet Energy (PC1)

- ≻ Run a coupled L84-ENSO model
- a) delayed ENSO effect on jet stream equation
- b) direct ENSO effect on eddy equation

ENSO composites—CM2.0

ENSO composites-CM2.1

