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Physical Problem 

•  Diagnose and understand the mechanisms of 
observed low frequency observed (1951-2000) North 
Atlantic SST variability. 

•  In particular, what were the roles of weather noise 
forcing, coupled feedbacks, and ocean dynamics? 

•  What are the implications for decadal predictability? 



Tripole 

Index: area average SST difference. Northern box 
minus Southern. (Czaja and Marshall 2001, QJRMS)!

1951 2000 



Tripole Mechanism Issues 

•  External forcing or internal variability? 
•  Remote or local origin? 
•  Why decadal time scale? 
•  Connections to other modes of variability (e.g. 

NAO, AO, AMO, TAV, PDO, AMOC)? 
•  Implications of understanding of mechanisms 

for predictability? 



A Menagerie of Models 

•  Hasselmann model  (conceptual/motivational) 
•  Barsugli/Battisti model  (conceptual/motivational) 
•  CGCM or reanalysis  (data to interpret) 
•  AGCM ensemble  (determine weather noise) 
•  Intermediate Coupled Model (parameterized 

atmospheric transients, controlled experiments) 
•  Czaja/Marshall model  (conceptual/diagnostic) 



The Four Mechanisms of Low 
Frequency Climate Variability (SST)  

(Sarachik et al., 1996) 

1.  Forced by atmospheric weather noise 
(Hasselmann 1976) 

2.  Forced by oceanic “weather noise” 

3.  Intrinsic coupled variability (e.g. coupled 
ocean-atmosphere) that is not forced by 
weather noise 

4.  Externally forced 



Hasselmann’s Model (Damped 
Brownian Motion) 

•  0-dimensional (1 point) model. 
•  Slab mixed layer ocean forced by stochastic heat 

fluxes, feedbacks damp SST anomalies. 
•  Stochastic heat flux forcing (white spectrum) 

represents random atmospheric weather noise. 

•  What properties of the low frequency climate 
variability can this minimal model explain? 
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Properties of Hasselmann’s 
Model 

•  No SST variability without weather noise forcing. 

•  Appears to explain redness of climate spectra (but 
not the peaks). 

•  Suggests a testable null hypothesis for climate 
variability: all low frequency variability is the response 
to forcing by random weather noise.  



The Plan 
•  Scale up Hasselmann’s model to a CGCM class 

model. 

•  Force the ocean with specified weather noise surface 
fluxes. 

•  Main issues 
–  What sense does it make to force a CGCM with 

weather noise? The CGCM produces its own 
chaotic weather variability that can’t be predicted 
or controlled. 

–  How to choose N ? 



Barsugli and Battisti (BB) 
Model 

•  0-dimensional (1 point model) 
•  Slab atmosphere coupled to slab ocean 
•  Atmosphere forced by radiation, ocean (surface 

fluxes), and weather noise 
•  Ocean forced by atmosphere (surface fluxes) 
•  Makes contact with CGCM architecture 
•  Hasselmann model is a special case (energy balance 

limit). 



Barsugli and Battisti Model 
•  Atmosphere Ta, ocean To, weather 

noise N  
•  Atmosphere (Ta): 

•  Ocean (To): 

•  Reduces to Hasselmann model for 
slave atmosphere (dTa /dt  0).  
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dTa
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Equivalent BB Model 
•  Atmosphere: 

•  Ocean: 

•  Forcing: 

(but remember we don’t know N) 
•  Noise free atmosphere, ocean forced by “weather 

noise” surface fluxes. 
•  Diagnostic only – the weather noise has to be 

determined from the output of the original model. 
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“AMIP Ensemble” 

•  Force an ensemble of AGCMs with the 
same SST and external forcing 
evolution. 

•  Each ensemble member has a different 
initial condition. 

•  Gates et al. 1999. 



AMIP/GOGA Ensemble 

AGCM 
1

AGCM … AGCM 
2 i

Observed time evolving 
SST, sea ice 

Response 1 Response 2 Response i … 

Ensemble Mean 
Response 

Response of AGCMi = SST forced signal + Noisei 

Noisei is distinct for each AGCMi 



AMIP Ensemble Properties 
•  The AMIP ensemble mean is the SST forced “signal.” It is 

independent of the choice of initial atmospheric states. 

•  Then the solution for each ensemble member is: 
(the SST/externally forced ensemble mean) + (the residual) 

•  The residuals are uncorrelated between ensemble members. 

•  The ensemble mean can be thought of as an atmospheric 
model with 
–  parameterized transient eddy fluxes 
–  No weather noise 

•  The residuals are the “weather noise” the non-parameterizeable 
and unpredictable part of the atmospheric evolution. 



Diagnosis of the Weather 
Noise 

•  To find the weather noise in data 
produced by an AGCM simulation (or in 
observations), remove the ensemble 
mean of the AMIP ensemble forced by 
the same SST and external forcing. 

Weather Noise = (observed) – (SST forced) 



AGCM 
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Other Ingredient: 
Coupled Model With a Noise Free 

Atmosphere (Intermediate Coupled Model) 

•  Couple AGCM AMIP ensemble to OGCM. 
–  Each AGCM ensemble member sees the same 

OGCM SST  
–  OGCM sees ensemble mean surface fluxes from 

the atmospheres (no weather noise) 
–  The AGCM ensemble and the OGCM interact just 

as the AGCM and OGCM do in a CGCM 

•  “Interactive Ensemble CGCM” or IE-CGCM 
–  Kirtman and Shukla 
–  CGCM class feedbacks, parameterizations 



Interactive Ensemble CGCM 

AGCM 
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AGCM … AGCM 
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SST 

Response 1 Response 2 Response N … 

Ensemble 
Mean Surface 

Fluxes 

OGCM!



Properties of IE-CGCM 

•  Much reduced internal SST variability on all time scales 
compared to CGCM when no external forcing.  
–  No intrinsic AMOC variability, as in other ICMs. 
–  Proves that internally generated SST variability in the 

CGCM is forced primarily by atmospheric weather noise. 

•  Exceptions 
–  ENSO-related SST variability in the equatorial Western 

Pacific 
–  Internal ocean variability associated with strong currents 

(ocean “weather noise”). 



Response to Observed External Forcing 
1870-2000 (20C3M) 

Colors = ensemble members 
Black= ensemble mean 

Red = CCSM3 ensemble mean 
Blue = CCSM3 IE  

CCSM3 CMIP4 



Noise Forced IE-CGCM 
•  Specified weather noise surface flux forcing is added to the 

surface fluxes seen by ocean 
–  Heat, momentum, fresh water 

•  Weather noise is calculated from observations (or CGCM 
output) and the SST forced AMIP ensemble 

•  The model is an ICM with deterministic solutions to the weather 
noise forcing.   

•  It is many times more “complex” and more 
expensive that the underlying CGCM (!!). 

•  Applied to the BB model, this procedure yields the “equivalent 
BB model,” a diagnostic coupled model. 



Noise Forced Interactive Ensemble 
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Other Ways to Think About  
Weather Noise Forced IE 

CGCM:  
•  It is like an OGCM simulation forced by observed 

fluxes but with feedbacks correctly taken into 
account. 
–  “OGCM” simulations typically include atmospheric 

feedbacks (e.g. damping) as well as specified 
observed fluxes. This is inconsistent. 

•  It is a type of Coupled Data Assimilation 

–  CGCM-like model constrained by data 



Tripole Problem 
•  Simulate the observed 1951-2000 tripole index using 

a CGCM-class model forced by observed weather 
noise. 

•  Try to understand the results in the framework of the 
simple model of Frankignoul and Hasselmann (1976) 
as extended by Marshall et al. (2001), Czaja and 
Marshall (2001): 
–  Weather noise 
–  Atmospheric feedback to SSTA  
–  Gyre circulation 
–  AMOC 



Earlier Work 
•  Kushnir 1994; Deser and Blackmon 1993 

–  Observational  

•  Seager et al 2000 
•  Force ocean with reanalysis surface fluxes. Heat flux forcing dominates, ocean dynamics secondary 

for SST 

•  Marshall et al. 2001; Czaja and Marshall 2001 
–  Observational diagnosis. Simple model of tripole variability 

•  Eden and Willibrand 2001 
–  Force OGCM in NA with NCEP reanalysis surface fluxes 

•  Eden and Greatbatch 2003 
–  Force OGCM in NA with simple stochastic atmosphere 

•  Visbeck et al. 2003 
–  Role for ocean dynamics at longer time scales 

•  Bellucchi et al. 2008 
–  Analysis of tripole simulated in SINTEX-G CGCM 



Data and Models 

•  NCEP reanalysis 1951-2000, monthly means 

•  COLA CGCM and IE-CGCM 
–  COLA V2 AGCM (T42, L18) 
–  MOM3 OGCM (1.5º, finer meridional near equator) 

non-polar domain 
–  Anomaly coupled 



Elements of Tripole SST Variability 

•  Weather noise (NAO variability) 
•  Feedback of SST ! NAO 

–  In terms of heat flux is this positive? 
negative? 

•  Ocean dynamics heat flux 
– Gyre circulations 

•  Modulations of mean gyre 
•  Intergyre gyre 

– AMOC 



Weather Noise and Feedbacks 
regression 7 year running mean onto tripole 



Experiments 

•  Force Interactive Ensemble (IE) CGCM with 
weather noise surface fluxes for 1951-2000. 

•  If the SST variability was the response to the 
weather noise, it will be reproduced. 
–  Further experiments will then isolate the role of 

various processes in the SST variability (e.g. 
ocean dynamics, location and type of weather 
noise forcing, …) 

•  Diagnostic only (“additive noise”). 



Need to Understand Model’s 
Own Internal Variability 

•  The model matters. Different models may 
produce different results due to different 
biases 

•  Perfect model, perfect data application 
–  The COLA CGCM NAO and tripole patterns are 

shifted eastward ~25° from the observed locations 
–  The tripole is forced by weather noise heat fluxes 



Experiments to Diagnose 
Observed Variability 

•  Forcing Data: 1951-2000 NCEP reanalysis 
monthly surface fluxes and SST 

Experiment Forcing Noise Forcing Region 
Gctl all Global ocean 

NActl all North Atlantic 
150N~650 N 

NAh heat  … 
NAm momentum … 

Note: “all” ~ freshwater, heat, and momentum 

•  N.B.: biased model, inaccurate data, no 
external forcing in model or analysis 



NActl Reconstruction of 
Monthly SSTA 



Tripole Index (Detrended) 

Observed 

NActl 

Gctl 

NAh 

NAm 



Summary of Results 

•  The tripole index is locally forced by the 
weather noise heat flux (Gctl, NActl, NAh). 

•  Wind stress weather noise forces a tripole 
response that damps the full response. 



Extract Model Patterns by Regression of Simulation 
Results Against Observed Tripole Index 

Gctl!

NActl!

NAm!

Observed!

NAh!



Gyre Circulation  and Variability  
in NActl 

Mean Gyre! EOF 1 (31%) (“Intergyre Gyre”)!

PC1 of EOF1 (gyre index); NAO Index (observed)!



Tripole and Intergyre Intergyre Gyre 
Indices NActl 

Gyre index: area avg. streamfn., 60°W-40°W, 35°-45°N   



AMOC 

NActl 

NAh 

IE Unforced 

NAm 



Heat Budget Analysis 

•  Vertical integral over full depth of the 
ocean 
– Heat storage tendency = dynamics 

tendency + surface heat flux 
•  Surface heat flux is total (noise + feedback) 
•  Heat storage tendency calculated from monthly 

mean output 
•  Dynamics tendency obtained as residual 



Heat Budget Tendencies 
7 year running annual means 

NActl NAh 

NAm 

Heat storage tendency 

Net surface heat flux 

Ocean Dynamics tendency 



Regression of Barotropic Streamfunction 
Against Ocean Dynamics Tendencies 

NAh NAm 

“Intergyre gyre” 

Counterclockwise increases 
tripole ! heat (!) 

Modulation of mean gyres: 

Reduction increases ! 
heat 

NActl 



Simple Model  
Czaja and Marshall 2001 

! 

d"T
dt

= #$"T +%N + g&g

Tripole temperature difference, north minus south 

! 

"T

! 

"g Intergyre gyre strength (IGG, positive clockwise) 

! 

N Tripole surface heat flux noise difference, north minus south  

Interpretation: Parameterized ocean heat budget. Heat 
storage parameterized as proportional to 

! 

"T

! 

" Damping parameter 

! 

g IGG heat storage tendency parameter (CM01 assume >0) 

! 

" =                 with heat budget interpretation, effective depth H 

! 

1/("cH)

(1) 
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d"T
dt

= #$"T +%N + g&g

Hasselmann model +    Ocean dynamics 



Simple Model II 

! 

" = #N $ f '%T

! 

" Tripole wind stress difference, north minus south 

! 

" Relates tripole wind stress to surface heat flux (<0) 

! 

f ' Feedback factor for tripole on wind stress, >0 when 
the feedback heat flux is >0. 

! 

"g = a #dt $ % f&T(t %
t% td

t
' td

2
)

! 

td Delay time for wind stress to set up the IGG, related 
to Rossby wave propagation 



Simple Model III 

! 

d"T
dt

= #$"T # fg"T(t # td
2
) +%N

•  Stochastically forced delayed oscillator equation. 

•  If N=0, properties governed by the parameter R = fg/! 
•  R < 0  solutions are damped, non-oscillatory 

•  R > 0  solutions are oscillatory 

o  R < R0 decaying (1<R0<") 

o  R > R0 growing 

(2) 



Simple Model Parameter 
Estimation and Results 

•  With the heat budget interpretation, we can 
now determine the parameters !, f, g, H, td 
from the properties of the numerical 
simulations. 

•  Use the simple model to estimate the 
predictability of the tripole. 

"  Annual mean data averaged over the 
calendar year. 



Vertical Structure of Annual Mean 
Tripole T: H " 500 m 

NActl NAh 

NAm NActl and NAh+NAm 



Fit Parameters  
•  Define gyre index for IGG 

– Use the barotropic stream function from 
NAh (noise heat flux forcing only), 
averaged over a box between the two 
tripole boxes. 

•  Do lag regression of !T against gyre 
index.  
o   td /2 = 3-4 years 
o   f = -3 K Sv-1 

o Implies negative heat flux feedback on tripole 
SSTA 



•  R = 0.48 
–  0<R<1 implies the unforced solutions are damped 

oscillatory 
•  g = -0.054 K Sv -1yr -1 

–  So g<0, while CM01 assert g>0 is a given 
–  Therefore counter-clockwise IGG increases tripole 
!T 



Simple Model (eq. 3) Verification 
•  Force with observed heat flux noise 
•  Use initial conditions 1950-1953, observed 

noise 

Simulation  

Simple model 
solution 

NAh NAm 

NActl 



Power Spectrum of 
Response to Stochastic Forcing 

•  Black: Hasselmann 
•  Blue: full model 
•  Red: feedback wind 

stress only 
•  Green: noise wind 

stress only 



Implications for Predictability 
•  Tripole is weather noise forced, but the weather noise 

can’t be predicted. 

–  Therefore weather noise destroys predictability. 

–  Predictability arises from accuracy of the initial 
state, realism of the model feedbacks. 

–  Hypothesis: the best model to make predictions is 
the interactive ensemble with weather noise 
forcing = 0, best ocean initial state. 



Example: Retrospective Predictions 
with Simple Model (Hindcasts) 

•  Set heat flux noise to zero 

•  NAh initial conditions  
–  Need !T for 3, 2, and 1 years before initial time 
–  Initial growth possible, but turns out not to play an 

important role  

•  12 year predictions starting each year 1954-1999 
•  Verified against NAh  !T 

! 

d"T
dt

= #$"T # fg"T(t # td
2
) +%N



Hindcast Verification Simple Model 

Hindcasts 

Persistence 

Simulation 



Subperiods 

1954-1975 1976-2000 

1984-2000 

Hindcasts 

Persistence 

Simulation 



Hindcasts from 1880-2009 ERSST Initial 
Conditions 



Tripole #T Predictions 
from 2008 and 2009 ICs  



COLA Model Diagnosis of the Observed 
North Atlantic SST Variability 

•  The reconstructed later 20th century North Atlantic tripole SST 
variability is predominantly forced by the local weather noise. 

•  In the context of the simple model of Czaja and Marshall 
(2001), the tripole is in a damped oscillatory regime, even 
though the atmospheric heat flux feedback to the tripole is 
negative, because the intergyre gyre carries heat in the 
opposite direction from that found/assumed in other studies.  

•  A decadal peak in the spectrum should result from the simple 
model with R>0 forced by white noise (Czaja and Marshall 
2001). 

•  The simple model indicates no decadal predictability of the 
tripole variability. 



Hierarchy of Models 

•  CGCM or reanalysis   
•  Intermediate Coupled model 
•  AGCM ensemble   
•  Czaja/Marshall model   
•  Barsugli Battisti model   
•  Hasselmann model   
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For Additional Details 
•  Wu, Z., E. K. Schneider, and B. P. Kirtman, 2004: Causes of low 

frequency North Atlantic SST variability in a coupled GCM. Geophys. 
Res. Lett., 31, L09210, doi:10.1029/2004GL019548.  

•  Schneider, E. K. and M. Fan, 2007: Weather noise forcing of surface 
climate variability. J. Atmos. Sci., 64, 3265-3280. 

•  Fan, M., 2009: Low frequency North Atlantic SST variability: Weather 
noise forcing and coupled response. PhD thesis, George Mason 
University. 

•  Fan, M. and E. K. Schneider, 2011: : Observed decadal North Atlantic 
tripole SST variability. Part I: Weather noise forcing and coupled 
response. J. Atmos. Sci. (in revision). See also COLA Technical Report 307. 

•  Schneider, E. K. and M. Fan, 2011: Observed decadal North Atlantic 
tripole SST variability. Part II: Diagnosis of mechanisms. J. Atmos. Sci. 
(submitted). See also COLA Technical Report 308. 
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